eLIFE Publishes our Research on the Evolution of Glutamate Receptors !!!
Metazoan Evolution of Glutamate Receptors Reveals Unreported Phylogenetic Groups and Divergent Lineage-Specific Events
Abstract: Glutamate receptors are divided in two unrelated families: ionotropic (iGluR), driving synaptic transmission, and metabotropic (mGluR), which modulate synaptic strength. The present classification of GluRs is based on vertebrate proteins and has remained unchanged for over two decades. Here we report an exhaustive phylogenetic study of GluRs in metazoans. Importantly, we demonstrate that GluRs have followed different evolutionary histories in separated animal lineages. Our analysis reveals that the present organization of iGluRs into six classes does not capture the full complexity of their evolution. Instead, we propose an organization into four subfamilies and ten classes, four of which have never been previously described. Furthermore, we report a sister class to mGluR classes I-III, class IV. We show that many unreported proteins are expressed in the nervous system, and that new Epsilon receptors form functional ligand-gated ion channels. We propose an updated classification of glutamate receptors that includes our findings.
New Publication
Our work on the evolution of Toll-like receptors in metazoans has been published in Frontiers in Immunology
NEW PUBLICATION
Our work on the chronic effects of MAPK pathway inhibition in the context of SYNGAP1 deficiency has been published in Pharmacological Reports.
We’ve published a Popular-Science book with National Geographic !!!
In just a few days our pop-science book entitled ‘La Neurogenómica. La genética del cerebro’ will be for sale all over Spain and Mexico.
The book, which is published by National Geographic, addresses the most recent findings about how genes govern brain function.
This book is part of the larger collection ‘Los Desafios de la Ciencia‘.
More Funding for our Scientific Network for the Study of Synapses
The Spanish Ministry for Economy and Competitivity will keep funding our research network ‘Synaptic Role in Cognitive Disabilities Network‘ (http://www.syncogdis.org/).
In this network we have brought together scientists from many different disciplines with the goal to accelerate research in the study of the synaptic role in brain disorders such as neurodevelopmental conditions and neurodegenerative diseases.
European Project Granted to the Lab !!
An European scientific consortium lead by our research group has been granted with an ERA-NET NEURON grant to support the research project “Synaptic Dysfunction in Intellectual Disability Caused by SYNGAP1. Translational Research to Develop Human Models and Advance Pharmacological Treatments”. The main goal of this project is to make iPSCs harbouring SYNGAP1 mutations causing intellectual disability and to use them to identify new potential treatments.
This project will start in the first semester of 2018 and finish in 2021.
Meta-Analysis Paper Published
We have published a meta-analysis paper where we critically review the proteomics data acquired over the year to elucidate synaptic mechanism of Mental Disease. We suggest that future research in the field will require higher levels of standardization and larger-scale experiments to address the challenge posed by biological and methodological variability.
Rita Reig-Viader, Carlos Sindreu and Àlex Bayés.
Synaptic proteomics as a means to identify the molecular basis of mental illness: are we getting there?
Progress in Neuropsychopharmacology and Biological Psychiatry. 2017 Sep 20. pii: S0278-5846(17)30461-X.
Second Meting of the SynCogDis Network
The second meeting of the SynCogDis research network, coordinated by our group, will take place in Alicante the 28th and 29th of July in the context of the SENC (Sociedad Española de Neurociencias) meeting.
Methods Paper Published
We have published a methods paper describing the biochemical tools that we have developed over the years and use routinely in the lab to isolate synapses and sub-synaptic protein complexes for proteomic characterisation:
Rita Reig-Viader and Àlex Bayés. Quantitative In-Depth profiling of the Postsynaptic Density Proteome to Understand the Molecular Mechanisms Governing Synaptic Physiology and Pathology. Current Proteomic Approaches Applied to Brain Function. 2017 Human Press, Springer Protocols. ISBN 978-1-4939-7119-0.