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Abstract 27 
Electrophysiological features of excitatory synapses vary widely throughout the brain, 28 
granting neuronal circuits the ability to decode and store diverse patterns of information. 29 
Synapses formed by the same neurons have similar electrophysiological characteristics, 30 
belonging to the same type. However, these are generally confined to microscopic brain 31 
regions, precluding their proteomic analysis. This has greatly limited our ability to investigate 32 
the molecular basis of synaptic physiology. Here we introduce a procedure to characterise 33 
the proteome of individual synaptic types. We reveal a remarkable proteomic diversity 34 

among the synaptic types of the trisynaptic circuit. Differentially expressed proteins 35 
participate in well-known synaptic processes, controlling the signalling pathways 36 
preferentially used among diverse synapses. Noteworthy, all synaptic types differentially 37 
express proteins directly involved in the function of glutamate receptors. Moreover, neuron-38 

specific gene expression programs would participate in their regulation. Indeed, genes 39 

coding for these proteins exhibit such distinct expression profiles between neuronal types 40 
that they greatly contribute to their classification. Our data is an important resource for 41 

exploring the molecular mechanisms behind electrophysiological properties of different 42 
hippocampal synaptic types. Our combined analysis of proteomics and transcriptomics data 43 
uncovers a previously unrecognised neuron-specific transcriptomic control of synaptic 44 
proteome diversity, directed towards the regulation of glutamate receptors and their 45 
regulatory proteins. 46 
 47 
Keywords: Synaptic type, proteomics, proteome diversity, transcriptomics, laser-48 
capture microdissection, hippocampus, trisynaptic circuit, glutamate receptors, gene 49 

regulation.  50 
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Introduction 51 
Proteomics research performed on synaptic biochemical preparations has established a very 52 
comprehensive catalogue of proteins that play a role in synaptic biology1–7. This central 53 
advance in brain research has nevertheless been limited by the requirements of biochemical 54 
fractionation procedures and the sensitivity limitations of proteomics methods. These have 55 
imposed to work with relatively large brain areas, such as the hippocampus or neocortex6,8–56 
11. Yet, these brain samples are not homogenous, containing many different synaptic types 57 
that are analysed together12. Accordingly, proteomics research has uncovered the 58 
composition of the average, or the prototypical, synapse in a given sample. However, to 59 
understand the molecular mechanisms orchestrating the functional states that a synapse can 60 
take, it is imperative to investigate individual synaptic types. This is arguably the most 61 
important technical hurdle to precisely elucidate the molecular mechanisms behind synaptic 62 
function, with implications on information processing and cognition.  63 
 64 
Synaptic types can be defined in different ways, for instance they can be chemical or 65 
electrical; they can also be defined based on their neurotransmitter content, the pair of 66 
neurons forming them or as recently shown, according to the expression patterns of key 67 
scaffolding molecules13,14. In the present work a synaptic type refers to that formed by a 68 
specific pair of pre- and post-synaptic neurons. This is because there is an extensive 69 
electrophysiological literature showing that synapses defined by connectivity have different 70 
functional properties12,15–17. A paradigmatic example is to be found in the hippocampus, 71 
where functional differences between CA3-CA1 and DG-CA3 glutamatergic synapses are 72 
prominent17.  73 
 74 
Several methodological approaches have appeared in recent years to get closer to the final 75 
goal of isolating individual synaptic types or even individual synapses. All of them have been 76 
performed in mice and rely on genomic manipulations. Some of these approaches used 77 
fluorescently tagged proteins to sort synaptosomal preparations18–22. These methods have 78 
allowed to investigate glutamatergic neurons in large brain regions, or to investigate the cell-79 
surface proteome of mossy fibre synapses in CA320. Other approaches took advantage of 80 
proximity labelling methods to define the proteome of inhibitory synapses or the synaptic 81 
cleft23–25. More recently, confocal imaging studies in mice expressing three of the four 82 
proteins in the Psd95 family tagged with different fluorophores, provided a glimpse at the 83 
daunting molecular diversity that excitatory synapses could have, without losing anatomical 84 
information14,26. These cutting-edge studies are starting to uncover the molecular diversity 85 
among synapses, that could only be suspected until now. Nevertheless, these approaches 86 
are not fit to explore the large proteomic landscapes of local synaptic types, and have low 87 
translational power, as they cannot be used in human samples. So far, research on synaptic 88 
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proteome diversity has not been able to provide a general framework or a set of general 89 
principles to  explain  this variability. 90 
 91 
To start addressing the molecular diversity between types of glutamatergic synapses, we 92 
leveraged on the topographical organization of the hippocampus. Which contains one of the 93 
best studied neuronal circuits in the brain, the trisynaptic circuit. This is formed by three types 94 
of excitatory synapses that localize to anatomically different layers. Importantly, each of these 95 
layers contains mostly one synaptic type17,27–29. In this circuit, the first synapse is made 96 
between the axons of layer II neurons from the entorhinal cortex and the dendrites of granular 97 
cells in the dentate gyrus molecular layer (EC-DG). In turn, granule cell axons give rise to the 98 
mossy fibres that contact the proximal dendrites of CA3 pyramidal cells in the striatum 99 
lucidum (DG-CA3). Finally, the third synapse is formed by axons leaving CA3 neurons and 100 
contacting the proximal dendrites of CA1 pyramidal neurons in the striatum radiatum (CA3-101 
CA1). Electrophysiological studies have demonstrated that these synapses have different 102 
functional characteristics, displaying unique synaptic transmission and plasticity features30.  103 
 104 
To reveal the proteomic diversity between glutamatergic synaptic types, we developed a 105 
high-yield procedure that allows to characterise their proteome. Using this method, we 106 
uncovered the proteomic diversity of the synaptic types forming the trisynaptic circuit of the 107 
dorsal hippocampus. We also investigated expression differences of genes coding for 108 
synaptic proteins in 55 neuronal types from the hippocampus and subiculum. Together our 109 
proteomics and transcriptomics analysis indicate that abundance differences in glutamate 110 
receptors and the proteins that regulate them are common drivers of proteome variability 111 
across synaptic types and that neuron-specific gene expression mechanisms participate in 112 
this regulation.  113 
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Results 114 
 115 
Development of a procedure to obtain synaptic proteins from microscopic samples. 116 
To increase the anatomical resolution of synapse proteomics we have developed a 117 
procedure to extract synaptic proteins from microscopic brain regions. This method combines 118 
laser-capture microdissection (LCM) with enhanced extraction and recovery of synaptic 119 
proteins. We applied this procedure to perform deep proteomic profilings of the synaptic 120 
types constituting the trisynaptic circuit from the dorsal hippocampus. 121 
 122 
In this procedure forebrains are dissected and rapidly snap-frozen prior to cryosectioning. 123 
Brains cannot be chemically fixed, as this negatively interferes with later proteomic analysis. 124 
We stablished maximum section thickness for effective LCM cutting to be 10 µm. 125 

Microdissection was performed in coronal slices encompassing the first 500 µm of the dorsal 126 
hippocampus (Suppl. Fig1a). As the pyramidal and granular layers, which contain cell bodies, 127 
can be visually distinguished (Fig. 1a), they can be excluded, collecting only the synaptic-128 
rich neuropile (Fig.1b-c, for an example at CA1). By dissecting fragments of 100 µm in width 129 
it is possible to have control over the hippocampal layer collected (Suppl. Fig 1b-c). From the 130 
dentate gyrus we obtained the Molecular Layer (ML, Fig. 1d), from CA3 we dissected the 131 
Stratum Lucidum (SL, Fig. 1e) and from CA1 the Stratum Radiatum (SR, Fig. 1c). The higher 132 
translucidity of the SL helped in localizing and collecting this layer.  133 
 134 
Extracting synaptic proteins from the microscopic amounts of tissue collected by LCM is 135 
extremely challenging. To cope with this limitation, we developed a procedure designed to 136 
minimize sample manipulation, which increases sample loss, while maximizing recovery of 137 
synaptic proteins. This procedure takes advantage of the selective solubility of synaptic 138 
structures to the detergent Triton X-100, such as the postsynaptic density (PSD), the active 139 
zone (AZ) or the extracellular matrix of the synaptic cleft5. First, microdissected tissue is 140 
accumulated in a solution containing 1% Triton X-100 (Fig. 1f-h). Next, neuropile fragments 141 
are subjected to a three-step treatment, a brief bath sonication, a mild thermal shock at 35C 142 
in agitation, and a second sonication step. This procedure fully disperses neuropile fragments 143 
and maximises the effect of the detergent, while preserving protein integrity and avoiding 144 
sample manipulation. A final centrifugation allows to collect Triton-insoluble proteins (Fig. 1i). 145 
 146 
 147 
 148 
 149 



 6 

 150 
 151 
Figure 1. Effective separation of proteins from each of the synapses constituting the trisynaptic 152 
circuit using laser-capture microdissection and biochemical processing of hippocampal layers. 153 
a. Brightfield image showing the hippocampus in a coronal section of the dorsal mouse brain used for 154 

laser-capture microdissection (LCM). Image taken with the microscope used for LCM. Note that 155 
CA1/CA3 pyramidal layer and dDG granular layer are visible in hippocampal subfields. Scale bar 156 
1000µm. 157 

b. Brightfield image of the CA1 subfield before microdissection. Pyramidal layer is highlighted in purple. 158 
The green line marks the area that will be microdissected. Microdissected fragments had a width of 159 
approximately 100µm, thus only collecting neuropile from the Stratum Radiatum layer. Scale bar 300µm. 160 

c. Brightfield image of the CA1 subfield from the section shown in (b) after LCM. The pyramidal layer, 161 
highlighted in purple, is not collected. Scale bar 300µm. 162 

d. Brightfield image of the dorsal dentate gyrus after LCM. Microdissected fragments had a width of 163 
approximately 100µm, which allowed the specifically collect neuropile from the Molecular Layer. The 164 
granular layer is highlighted in orange. Scale bar 300µm.  165 

e. Brightfield image of the CA3 subfield after LCM. Microdissected fragments had a width of approximately 166 
100µm, which allowed to collect neuropile from the Stratum Lucidum. The pyramidal layer is highlighted 167 
in green. Scale bar 300µm. 168 

f. Total area (mm2) microdissected and number of brain sections collected for each of the three biological 169 
replicas analysed by proteomics of the dDG. 170 
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g. Total area (mm2) microdissected and number of brain sections collected for each of the three biological 171 
replicas analysed by proteomics of the CA3. 172 

h. Total area (mm2) microdissected and number of brain sections collected for each of the three biological 173 
replicas analysed by proteomics of the CA1. 174 

i. Outline of the procedure used to enrich neuropile samples collected with LCM in synaptic proteins.   175 
j. Immunoblot of 1% Triton X-100 insoluble (Pellet) and soluble (Supern.) fractions obtained from the three 176 

hippocampal layers investigated. Proteins analysed are Psd95, a postsynaptic marker, and 177 
Synaptophysin (Syp) a synaptic vesicle marker.  178 

k. Bar plot of Psd95 presenting relative protein abundance as determined by immunoblot in 1% Triton X-179 
100 soluble (Supern.) and insoluble (Pellet) fractions from the three hippocampal layers investigated. 180 
IU: intensity units. Statistics, Two-way ANOVA and Fisher’s LSD post-hoc test, * p < 0.05. 181 

l. Bar plot of Synaptophysin (Syp) presenting relative protein abundance as determined by immunoblot in 182 
1% Triton X-100 soluble (Supern.) and insoluble (Pellet) fractions from the three hippocampal layers 183 
investigated (Blue, CA1; Green, CA3 and Orange dDG). IU: intensity units. Statistics, Two-way ANOVA 184 
and Fisher’s LSD post-hoc test, * p < 0.05.  185 

m. Micrograms of protein recovered in 1% Triton X-100 pellets per area of microdissected neuropile. To 186 
obtain 20µg of protein in insoluble fractions 100mm2 of neuropile have to be microdissected. 187 

 188 
 189 
To evaluate the efficacy of this procedure, we assayed samples by immunoblot against 190 
proteins known to be mostly soluble (Synaptophysin, Syp) or insoluble (Psd95) to Triton X-191 
100. Over 90% of the Psd95 signal was detected in pellets (Fig. 1k). Conversely, the same 192 
proportion of Syp was in supernatants (Fig.1l). Remarkably, no difference in Psd95 193 
abundance was observed in pellets between samples (two-way ANOVA), indicating that the 194 
procedure had a similar efficiency in all hippocampal layers.  195 
 196 
As these samples contain very little protein, standard approaches for protein quantification 197 
cannot be used. Protein concentration was determined by electrophoresis, using as internal 198 
calibration standards hippocampal synaptic preparations accurately quantified (Suppl. Fig. 199 
2a,b). Using this approach, we determined that insoluble fractions contain approximately 200 
20% of all protein in the tissue (Suppl. Fig. 2c), indicating that proteins in these fractions were 201 
concentrated 4-5 times. We also tested different extraction buffers to investigate if we could 202 
improve the efficiency of the procedure. Using a RIPA buffer we found that the amount of 203 
protein recovered in pellets was significantly smaller (Suppl. Figure 2d,e), yet this was at the 204 
expense of solubilizing a larger proportion of both Psd95 and Syp (Suppl. Fig. 2f-g). 205 
Indicating that more synaptic components were lost in the soluble fraction. On the other hand, 206 
increasing Triton concentration to 2% did not improved protein yield (Suppl. Figure 2e). 207 
Neither RIPA nor 2% Triton showed improved performance over 1% Triton X-100, which 208 
remained as the buffer of choice. Finally, we established how much protein was recovered 209 
in pellets per area of microdissected neuropile, this was important to keep LCM time to a 210 
minimum. We determined that for each 100mm2 of neuropile we obtained approximately 211 

20µg of triton insoluble protein (Fig. 1m). This was sufficient for our proteomics analysis, 212 

which routinely require 10µg of protein or less.   213 
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Deep proteomic coverage of synaptic types from the trisynaptic circuit reveals high 214 
similarity at the composition level. 215 
Using the above procedure, we obtained biological triplicates of synaptic preparations from 216 
the layers of the trisynaptic circuit and subjected them to an established proteomics 217 
workflow31. MS/MS data was examined with Scaffold-DIA (Proteome Software), to identify 218 
protein specimens and Progenesis QI (Waters) for high-sensitive peptide quantification (Fig. 219 
2a). Peptide abundance was normalized by the average abundance of peptides from 14 220 
synaptic scaffolding proteins (see methods). This allowed to correct for differences in: i) 221 
synaptic yield between preparations and ii) synaptic density between layers. Finally, 222 
MsqROB32,33 was used to identify proteins differentially expressed between synaptic types.  223 
 224 
The proteomic dataset obtained from microdissected tissue was benchmarked against a 225 
reference proteome. This was generated from the combination of two proteomes of 226 
hippocampal synaptic fractions prepared using standard procedures (Suppl. Fig. 2i)6. We 227 
produced the one of these datasets and the other had been previously published8 (Fig. 2b 228 
and Suppl. Table 1). Proteins detected in LCM samples but absent from the reference 229 
proteome were discarded as potential contaminants (Fig. 2a and Suppl. Table 1). Thus, 230 
initially Scaffold identified 2905 proteins from microdissected samples, of which 628 were 231 
discarded after benchmarking. Of the remaining 2277 proteins Progenesis provided 232 
quantitative data with at least 2 unique peptides for 2014 proteins, this being the final dataset 233 
investigated (Fig. 2a and Suppl. Table 1). 234 
 235 
We next confirmed that our method was able to retrieve proteins from distinct synaptic 236 
locations. Using the SynGO database2 to assign subsynaptic locations onto our dataset, we 237 
found that it was enriched in many of them, both pre- and postsynaptically (Fig. 2c). As a 238 
matter of fact, pre- and postsynaptic proteins were similarly enriched. The presence of 239 
presynaptic proteins in our preparations was confirmed by immunoblot (Suppl. Fig. 2f,j). 240 
Thus, our approach provides a wide view into the synaptic proteome. 241 
 242 
A small number of proteins were identified only in one synaptic type (CA3-CA = 29, DG-CA3 243 
= 68 and EC-DG = 52, Suppl. Table 1). Potentially these proteins could be very interesting, 244 
as they might be markers of synaptic types. Nevertheless, most of them (86%) could only be 245 
identified in one of the three replicates, and their abundance was very low (mean 3.45 246 
peptides/protein, compared with 43 peptides/protein for the whole set). Thus, we decided to 247 
exclude these molecules from subsequent analysis. Our data indicates that few proteins, if 248 
any, will be unique to one synaptic type in the trisynaptic loop. Which means that, at the 249 
qualitative level, the molecular machines operating at, otherwise functionally different 250 
synaptic types, are virtually identical.  251 
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 252 
 253 
Figure 2. Proteomics profiling of synaptic fractions from the trisynaptic loop identifies proteins 254 
differentially expressed in each synaptic type. 255 
a. Steps involved and informatic tools used in the analysis of mass-spectrometry data to establish the final 256 

list of proteins in synapses from the trisynaptic loop.  257 
b. Venn diagram showing protein overlap between proteins identified in synaptic fractions from the 258 

trisynaptic loop and two hippocampal reference proteomes that use established density gradient 259 
ultracentrifugation methods to isolate synaptic fractions. In total 2277 proteins from the LCM dataset 260 
overlap with reference proteomes. SR: stratum radiatum from CA1, SL, stratum lucidum from CA3 and 261 
ML, molecular layer from dDG. Ref. proteome I, generated in this study; and Ref. Proteome II 262 
corresponds with PSDII proteome as defined by Distler et al8. 263 

c. Sunburst plot showing SynGO Cellular Component terms enriched among proteins identified in 264 
synapses from the trisynaptic loop. Note that not only PSD-related locations are found significantly 265 
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enriched. Cellular locations corresponding with many other synaptic structures, such as the active zone, 266 
synaptic vesicles, endocytic zone, cytosol or even the extracellular matrix, are also represented.  267 

d. Bar plot presents relative abundance of Glua2 (d.1) and Vamp1 (d.2) determined by immunoblot in 268 
synaptic fractions isolated from CA1, CA3 and DG hippocampal subfields. A representative immunoblot 269 
image is shown. Statistical test used, one-way ANOVA, post-hoc Fisher's LSD test, * p < 0.05, *** p < 270 
0.001, **** p < 0.0001. 271 

e. Bar plot presents relative abundance of Shisa6 (e.1) and Prkar2a (e.2) determined by immunoblot in 272 
synaptic fractions isolated from CA1, CA3 and DG hippocampal subfields. A representative immunoblot 273 
image is shown. Statistical test used, one-way ANOVA, post-hoc Fisher's LSD test, *** p < 0.001, **** 274 
p < 0.0001. 275 

f. Bar plot presents relative abundance of mGluR2 (f.1) and Ptprd (f.2) determined by immunoblot in 276 
synaptic fractions isolated from CA1, CA3 and DG hippocampal subfields. A representative immunoblot 277 
image is shown. Statistical test used, one-way ANOVA, post-hoc Fisher's LSD test, * p < 0.05, *** p < 278 
0.001, **** p < 0.0001. 279 

g. Percentage of proteins with highest expression in CA3-CA1 synapses with concordant or discordant 280 
RNA expression levels. RNA data obtained from in situ hybridization studies deposited in the Mouse 281 
Brain Atlas (Allen Brain Map). 282 

h. Percentage of proteins with highest expression in DG-CA3 synapses with concordant or discordant RNA 283 
expression levels. RNA data obtained from in situ hybridization studies deposited in the Mouse Brain 284 
Atlas (Allen Brain Map). 285 

i. Percentage of proteins with highest expression in EC-DG synapses with concordant or discordant RNA 286 
expression levels. RNA data obtained from in situ hybridization studies deposited in the Mouse Brain 287 
Atlas (Allen Brain Map).  288 

j. Proteins with highest expression in CA3-CA1 synapses that also present increased RNA levels in 289 
excitatory neurons from the dorsal CA3 (CA3do, left column) or the dorsal CA1 (CA1do, right column) 290 
are indicated with a blue box. An empty box denotes no difference at the RNA level. RNA data obtained 291 
from single cell RNA sequencing data generated by the Allen Brain Cell atlas34. 292 

k. Proteins with highest expression in DG-CA3 synapses that also present increased RNA levels in 293 
excitatory neurons from the dentate gyrus (DG, left column) or the dorsal CA3 (CA3do, right column) 294 
are indicated with a green box. An empty box denotes no difference at the RNA level. RNA data obtained 295 
from single cell RNA sequencing data generated by the Allen Brain Cell atlas34. 296 

l. Proteins with highest expression in EC-DG synapses that also present increased RNA levels in 297 
excitatory neurons from the Entorhinal cortex (EC, left column) or the dentate gyrus (CA1do, right 298 
column) are indicated with an orange box. An empty box denotes no difference at the RNA level. RNA 299 
data obtained from single cell RNA sequencing data generated by the Allen Brain Cell atlas34.  300 

 301 
Gene expression contributes to synaptic proteome variability 302 
The above data implied that quantitative, rather than qualitative, variation drives functional 303 
diversity across synapse types. To identify differentially expressed synaptic proteins we used 304 
a ridge regression method designed to analyse peptide abundance data acquired by label-305 
free mass spectrometry32,33. This approach retrieved a total of 283 proteins, 14% of all, 306 
significantly overexpressed in one synaptic type (Suppl. Fig. 3a and Suppl. Table 2). Of 307 
these, 78 were from CA3-CA1 synapses, 157 from DG-CA3 synapses and 48 from EC-DG 308 
synapses. To validate our proteomics results we manually dissected acute hippocampal 309 
slices (Supplementary Video 1), isolated synaptic proteins and performed immunoblot 310 
analysis on two highly expressed proteins per layer (Fig. 2d-f). Importantly, the results 311 
validated the differential enrichment of all proteins examined. 312 
 313 
To investigate if differences in gene expression underlie proteomic changes, we analysed in 314 
situ hybridization (ISH) data from the Allen Mouse Brain Atlas35 (Suppl. Table 3 and 315 
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methods). Proteomic and ISH data were considered concordant if an upregulated protein 316 
showed highest RNA expression in the pre- and/or postsynaptic neurons forming it (e.g. for 317 
a CA3-CA1 protein, we would consider ISH data in pyramidal layers from CA3 and CA1). On 318 
average, the concordance between RNA and protein expression was 35%, indicating that 319 
only a fraction of the proteomic variability between synaptic types is due to gene expression 320 
(Fig. 2g-i). To confirm this, we retrieved data from single-cell RNA sequencing (scRNAseq) 321 
of excitatory neurons in dorsal CA1, dorsal CA3, DG and entorhinal cortex, from the Allen 322 
Brain Cell Atlas (ABCA)34 and identified upregulated genes (Fig. 2j-l, Suppl Table 3). Again, 323 
the concordance of protein and RNA data was around 35%. Hence, transcriptomic 324 
mechanisms have a role in defining synaptic proteome variability. 325 
 326 
Differentially expressed proteins introduce high diversity in the molecular mechanism 327 
operating at individual synaptic types 328 
To investigate the biological functions related to proteins with highest expression in one 329 
synaptic type, we performed enrichment analysis of signalling pathways36–38 and GO 330 
terms39,40 using the pathfindR tool41. pathfindR constructs protein-protein interaction 331 
networks and maps enriched terms onto them. Using hierarchical clustering and pairwise 332 
kappa statistics, pathfindR identifies one ‘Representative’ term in each network.  333 
 334 
We first clarified if a small number of proteins were responsible for a large proportion of 335 
enriched terms, a common bias with pathway enrichment analysis42,43. Yet this was not the 336 
case, as the ratio of enriched terms per protein was low (Suppl. Fig. 3b) and the proportion 337 
of proteins contributing to terms was high (Suppl. Fig. 3c) in all synaptic types. Importantly, 338 
most enriched pathways (75%) and GO terms (96%) were found only in one synaptic type 339 
(Suppl. Fig. 3d,e), thus, effectively informing about their unique functional properties. Only 5 340 
terms were enriched in all synaptic types. These were strongly related to synaptic function 341 
and included transmission across chemical synapses, postsynaptic signalling, actin 342 
cytoskeleton and cell adhesion (Suppl. Fig. 3f and Suppl. Table 4). 343 
 344 
While CA3-CA1 and DG-CA3 synapses shared several functional categories, none was 345 
found between CA3-CA1 and EC-DG synapses, and only 3 between DG-CA3 and EC-DG 346 
synapses (Suppl. Figure 3e,f, Fig. 3 and Suppl. Table 4). Suggesting that CA3-CA1 and DG-347 
CA3 synapses have a higher degree of similarity regarding their underpinning molecular 348 
mechanisms. Of note, the GOCC term ‘Schaffer collateral CA1 synapse’, appeared enriched 349 
in proteins from CA3-CA1 and DG-CA3 synapses. Among the pathways common to these 350 
synapses we identified well-known synaptic processes, such as signalling via calcium, 351 
through Ras and Rho GTPases or trans-synaptic signalling via BDNF, Ephrins and 352 
Semaphorins (Fig. 3).   353 
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 354 
Figure 3. Signalling pathways differentially regulating function in each synaptic type from the 355 
trisynaptic circuit. 356 
Signalling pathways overrepresented amongst DE proteins in each synapse of the trisynaptic loop. Pathways 357 
specific to CA3-CA1 synapses are framed in a blue box, pathways specific to DG-CA3 in a green box, those 358 
common to these 2 synapses in a yellow box and, finally, pathways specific to EC-DG synapses are in an 359 
orange box. Relative protein abundance for each of the 9 samples investigated by LC-MS/MS is presented 360 
as z-scores in heatmaps. A title and a heatmap is presented for each overrepresented pathway. Related 361 
pathways (i.e. CA3-CA1 pathways involved in Energy Metabolism) are framed with a dashed black line. For 362 
some pathways (i.e. Traffic of A2-containing AMPARs) we also present a heatmap with proteins that have a 363 
clear DE but did not reach statistical significance (Not Significant). In the ‘Rhos Activate Wasps and Waves’ 364 
gene names of members of the Arp2/3 complex are in bold.   365 
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Proteins with highest expression in CA3-CA1 synapses regulate AMPARs traffic, 366 
clathrin-mediated endocytosis, actin polymerization, Wnt signalling and glucose 367 
metabolism. 368 
We identified the Gria2 subunit of AMPA receptors (AMPAR, Fig. 2d.1 and 3) with highest 369 
expression in CA3-CA1 synapses. Moreover, Gria3 (q = 0.067) and Gria1 (q = 0.18) 370 
presented the same trend (Gria4 was not detected). These findings suggest that CA3-CA1 371 
synapses would have more of Gria2-containig AMPARs. Indeed, the pathway ‘Traffic of Gria2 372 
containing AMPAR’ was the most overrepresented of all (fold enrichment, 38.6, Suppl. Table 373 
4). Other proteins involved in the regulation of AMPAR traffic, such as those controlling 374 
clathrin-mediated endocytosis44 and neuronal pentraxin 1 (Nptx1)45, were also strongly 375 
enriched in CA3-CA1 synapses.  376 
 377 
Although actin-related categories were found in all synaptic types (Suppl. Fig. 3f and Suppl. 378 
Table 4), CA3-CA1 synapses presented many more functional categories related to 379 
microfilaments, particularly to their polymerization. For example, all 7 members of the Arp2/3 380 
complex, necessary for actin branching and dendritic spine structural plasticity46, presented 381 
higher abundance in this synaptic type, albeit only three reached statistical significance (Fig 382 
3 and Suppl. Table 2). This would be suggestive of a more refined control of spine structural 383 
dynamics in these synapses.  384 
 385 
We also found the non-canonical Wnt signalling pathway that controls calcium levels and 386 
synaptic plasticity47,48 overrepresented in CA3-CA1 synapses. Among the downstream 387 
effectors of this pathway, calcineurin (Ppp3ca) and the calcium-activated protein kinase C 388 
(PKC, isoenzyme Prkcg) were overexpressed in this synaptic type. Suggesting that the 389 
modulation of spine calcium dynamics via Wnt signalling might be especially relevant in these 390 
synapses. 391 
 392 
Finally, multiple functional categories related to energy production were specifically 393 
overrepresented in CA3-CA1 synapses. Suggesting that these synapses would have higher 394 
energetic demands. These include proteins regulating the traffic of glucose transporters to 395 
the plasma membrane, five out of the 10 glycolytic enzymes and enzymes related to pyruvate 396 
metabolism or ATP synthesis.  397 
 398 
Overexpressed proteins in DG-CA3 synapses control metabotropic and ionotropic 399 
glutamate receptors, organize neurofilaments and are involved in protein translation.  400 
The postsynaptic metabotropic glutamate receptor Grm1 presented increased abundance in 401 
DG-CA3 synapses. This was 3.4- and 1.5-fold higher than in CA3-CA1 and EC-DG 402 
synapses, respectively. Grm1 signals through Gq protein alpha subunits, which regulate 403 
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levels of the second messengers inositol trisphosphate (IP3) and diacyl glycerol (DAG). The 404 
signalling pathways ‘G alpha Q signalling events’ and ‘DAG and IP3 signalling’ were found 405 
significantly enriched in DG-CA3 synapses. Also, Necab2 and Homer3, known to modulate 406 
metabotropic glutamate signalling49 were found strongly overexpressed in DG-CA3 407 
synapses.  408 
 409 
Overexpressed proteins in DG-CA3 synapses also regulate NMDA and AMPA receptors. We 410 
found overrepresented pathways related to NMDA receptor function, including, ‘Regulation 411 
of NMDA Receptor Activity’ or ‘Negative Regulation of NMDA Receptor Mediated Neuronal 412 
Transmission’ (Suppl. Table 4). Among proteins controlling NMDARs, PTK2B might be 413 
particularly relevant, as this kinase also interacts with Grm150. We also identified proteins 414 
regulating AMPAR function, including Shisa651, Syt1752, Snap4753, and Nptxr45. Also related 415 
to the function of both AMPA and NMDA receptors is the signalling through ERK1/2 kinases. 416 
The GO pathway ‘Positive Regulation of ERK1 and ERK2 Cascade’ was also found 417 
overrepresented in DG-CA3 synapses.  418 
 419 
Interestingly, among NMDAR related proteins we identified the neurofilament light chain 420 
(Nefl), known to be involved in its trafficking54,55. Actually, the four proteins that form 421 
neurofilaments were found significantly overexpressed in DG-CA3 synapses. Being amongst 422 
the proteins with larger abundance differences between DG-CA3 and CA3-CA1 synapses 423 
(Suppl. Table 2). Many modulators of the Rho family of small GTPases, including GTPase 424 
activating proteins (GAPs) and, specially, guanine nucleotide exchange factors (GEFs) were 425 
also found overexpressed. This suggests that pathways regulated by these signalling 426 
molecules, mostly related to the regulation of the cytoskeleton, might be controlled in a more 427 
specific manner in this synaptic type.  428 
 429 
Finally, we observed a very striking increase of virtually all ribosomal proteins in DG-CA3 430 
synapses, with 21 of them reaching statistical significance (Fig. 3, Suppl. Tables 2 and 4). 431 
Moreover, several functional categories related to proteostasis were overrepresented in this 432 
synaptic type, including ‘Protein Stability’, or ‘Unfolded Protein Binding’. Finally, Pura and 433 
Purg, involved in the transport of messenger RNA into the postsynapse56, were also found 434 
overexpressed. To further investigate this finding, we went back to the analysis of scRNAseq 435 
done with the neurons that are engaged in the trisynaptic loop (Suppl. Table 3). In line with 436 
our proteomics findings, we observed a very strong upregulation of most ribosomal genes in 437 
the dentate gyrus (Suppl. Fig. 4a). These findings, together with the recent discovery that 438 
local translation occurs at Mossy Fibre boutons57, indicate that proteostasis would play a 439 
particularly relevant role in this synaptic type. 440 
 441 
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Upregulated proteins in EC-DG synapses would grant them a unique extracellular 442 
matrix. 443 
The proteome of EC-DG synapses presented several highly expressed proteoglycans, 444 
including Bcan, Ncan, Agrn and Hspg2 (Vcan and Cspg5 also presented highest expression 445 
in EC-DG, but did not reach statistical significance, Fig. 3). The synaptic location of all these 446 
proteins is well documented2, mostly localizing to the extracellular matrix (ECM). Indeed, the 447 
GO term ‘Extracellular matrix structural constituent’ and the Reactome pathway ‘Integrin cell 448 
surface interactions’, related to the ECM, were overrepresented in EC-DG synapses. We 449 
thus observed a differential composition of the EMC, especially regarding the abundance of 450 
proteoglycans, that could specifically modulate the properties of this synaptic type. As in the 451 
previous two synaptic types, we also identified overexpressed proteins that are related to the 452 
regulation of AMPAR. These include the ‘receptor-type tyrosine-protein phosphatase delta’ 453 
(Ptprd)58, the AMPAR auxiliary protein Shisa9, first described in the DG59, and the scaffolding 454 
protein Epb41l1, known to bind to A1 subunits of the AMPAR60,61, regulating its activity-455 
dependant insertion into the plasma membrane62. 456 
 457 
Proteins with highest expression in EC-DG synapses also retrieved several pathways related 458 
to the catabolism of branched chain amino, including ‘valine, leucine and isoleucine 459 
degradation’ (KEGG), ‘branched chain amino acid catabolism’ (Reactome) or ‘alpha amino 460 
acid metabolic process’ (GO). One of the two metabolic pathways to synthesize glutamate 461 
requires the catabolism of these amino acids, and the product of this reaction feed into the 462 
TCA cycle. EC-DG synapses might have a preferential use of this glutamate synthesis 463 
pathway, coupling synaptic transmission with energy production.  464 
 465 
Genes coding for proteins involved in glutamate receptor function are differentially 466 
expressed in most types of excitatory neurons. 467 
The fact that synaptic types, formed by different neurons, all exhibit distinct expression 468 
patterns of proteins involved in the regulation of glutamate receptors prompted us to 469 
investigate whether this is a result of genetic factors. Even more so when we consider our 470 
previous finding that gene expression plays a role in synaptic proteome variability (Fig. 2g-l). 471 
To do so we investigated gene expression in excitatory neurons of the hippocampus and 472 
subiculum, using data from the Allen Brain Cell Atlas (ABCA)34, which defines 55 types of 473 
excitatory neurons, grouped in 8 classes. We first split all genes in two groups, those coding 474 
for our reference proteome (Suppl. Table 1), which we refer to as ‘synaptic genes’, and the 475 
rest (non-synaptic genes). We found that 18% of synaptic genes presented expression 476 
differences between neuronal classes (Suppl. Fig. 4b, Suppl. Fig. 5a, and Suppl. Table 5) 477 
and 17% between neuronal types (Suppl. Fig. 5b-i and Suppl. Table 6). Interestingly, the 478 
frequency of DE synaptic genes was 3 times higher than in the group of non-synaptic genes 479 
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(Chi-square Test p < 0.0001, Suppl. Fig.4c). This remained significant if synaptic genes were 480 
compared to random gene sets of the same size taken from: i) all genes or ii) non-synaptic 481 
genes (Suppl. Fig.4c).   482 
 483 

 484 
Figure 4. Differentially expressed genes mostly regulate neurotransmitter receptor function and 485 
synaptic vesicle exocytosis. 486 
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a. Clustering of the coefficients of correlation for RNA expression of up-regulated genes with a synaptic 487 
location in excitatory neuron types from the hippocampal formation. 488 

b. Sunburst chart showing SynGO Cellular Component terms enriched among genes expressed at 489 
synapses that present increased expression in one or two types of excitatory neurons from the 490 
hippocampal formation. The background set for this analysis was the set of genes with a synaptic 491 
expression. Maximum stringency was applied for evidence filtering of SynGO annotations. PM: plasma 492 
membrane, AZ: active zone and PSD: postsynaptic density. 493 

c. Sunburst chart showing SynGO Biological Process terms enriched among genes expressed at 494 
synapses that present increased expression in one or two types of excitatory neurons from the 495 
hippocampal formation. 496 

d. Classes and types of excitatory neurons presenting increased expression of genes within Biological 497 
Process (GO) terms most overrepresented in the SynGO analysis. 498 

 499 
 500 
We observed that upregulated genes were mostly present in one neuronal class, and 501 
eventually in two (Suppl. Fig. 4d), while downregulated ones appeared more repeatedly, in 502 
up to 5 classes (Suppl. Fig. 4e). The same happened in the comparison between neuronal 503 
types (Suppl. Fig. 4f), downregulated genes appeared more repeatedly. As our goal was to 504 
capture the functional categories most unique to each class or types, we only considered 505 
upregulated genes for subsequent analysis.  506 
 507 
Next, we wanted to compare the expression patterns of upregulated synaptic genes between 508 
neuronal types. To achieve this, we computed expression correlation coefficients of each 509 
pair of neurons and performed hierarchical clustering. Surprisingly, neurons from the same 510 
class were grouped together (Figure 4a), perfectly replicating the classification obtained by 511 
the ABCA with the entire transcriptome34. Suggesting that synaptic genes from closely 512 
related neurons have more similar expression patterns, but also that synaptic genes have a 513 
role in the classification of hippocampal neuronal types. 514 
 515 
To investigate common features among upregulated synaptic genes, we performed 516 
enrichment analysis of ‘Cellular Component’ and ‘Biological Process’ categories with the 517 
SynGO database. To obtain highly specific categories we used our reference proteome as a 518 
background set, and the most stringent criteria for evidence filtering. The first analysis found 519 
that these genes code for proteins residing in two main locations, the postsynaptic density 520 
(PSD) and the active zone (AZ) (Fig. 4b). The analysis of Biological Processes returned 521 
categories related to synaptic vesicle exocytosis and to the regulation glutamatergic 522 
transmission, including the regulation of neurotransmitter receptor levels (Fig. 4c). Thus, 523 
synaptic genes with more different expression patterns between neurons would be mostly 524 
related to the exocytosis of synaptic vesicles and the regulation of glutamate receptor 525 
function. Finally, we asked if the genes linked to these SynGO categories were spread across 526 
neuronal classes and types or if, instead, they were concentrated in a small number of them. 527 
We found that genes from these functional categories are widely spread across neuronal 528 
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classes and types (Fig. 4d), indicating that their differential regulation is a common trend 529 
among them. 530 
 531 
We also investigated the signalling pathways associated to upregulated genes from 532 
individual neuronal types using pathfindR. In many instances the number of upregulated 533 
genes was small (Suppl. Table 6), accordingly, pathfindR could only found enriched terms in 534 
22 of the 55 neuronal types of the hippocampus and subiculum (Fig. 5a and Suppl. Table 7). 535 
Nevertheless, we observed that many of the enriched pathways were again related to the 536 
function of glutamate receptors (Fig. 5b). In 11 of the 22 types, upregulated genes were 537 
associated with pathways related to neurotransmitter receptor function, and in 8 this term 538 
was the most enriched one (Figure 5b, dark blue bars). These included terms such as 539 
‘ionotropic glutamate receptor activity’, ‘Trafficking of AMPA receptors’, ‘activation of NMDAR 540 
and postsynaptic events’ or ‘extracellular ligand gated ion channel activity’. In one neuronal 541 
type (CA1-343) the term ‘SV exocytosis’ was identified as the most enriched (Figure 5b, red 542 
bars). These observations matched the findings obtained with SynGO (Fig. 4b,c), and 543 
strengthen them, as they were obtained with different databases and bioinformatic tools.  544 
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 545 
 546 
Figure 5. Hippocampal synaptic types are mostly defined by genes regulating neurotransmitter 547 
receptor function. 548 
a. Neuron types having genes expressed at synapses that show increased expression define neuron-549 

specific synaptic types. Dashed lines correspond to neuron types whose upregulated genes cannot be 550 
linked to significantly overexpressed term. These synapses would not present any functional difference 551 
with those of other neurons from the same class.   552 

b. Fold enrichment of significantly enriched terms related to neurotransmitter receptor function (blue bars) 553 
or synaptic vesicle exocytosis (red bars). Dark blue or red denotes a term that is the most enriched one 554 
for that synaptic type. Light colours denote terms that are enriched but are not the most enriched. Fold 555 
enrichment corresponds to the ratio between the number of observed and expected genes related to 556 
one term.    557 
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Genes coding for proteins involved in glutamate receptor function importantly 558 
contribute to transcriptomic-based neuronal classifications. 559 
We have shown that synaptic genes generally present higher transcriptomic variation (Suppl. 560 
Fig. 4d) and that the ABCA classification of hippocampal neurons34 can be replicated only 561 
using upregulated synaptic genes (Fig. 4a). Suggesting that synaptic genes play an important 562 
role in determining hippocampal neuronal types. To investigate this possibility, we referred 563 
again to the ABCA database. We first confirmed that we could replicate the ABCA 564 
classification with the entire transcriptome, as classes of excitatory neurons clearly 565 
segregated in nonlinear dimensionality reduction maps (U-Map) (Fig. 6a). Noticeably, the U-566 
map generated with synaptic genes (Fig. 6b) was highly similar to that produced with all 567 
genes. Instead, U-Maps from non-synaptic genes (Fig. 6c and Suppl. Fig. Suppl_6a) had 568 
very different topologies, with a much higher overlap between neurons from different classes. 569 
Indicating that synaptic genes importantly contribute to the classification of hippocampal 570 
excitatory neurons, as it has been recently shown for cortical neurons63. To further validate 571 
this observation, we asked how many of the genes that contributed most to the classification 572 
were synaptic. To identify genes with a large contribution to the classification we used the 573 
Random Forest method, a supervised machine learning approach for data classification64, 574 
that determines the importance of each variable (here gene expression data) in a 575 
classification problem.  576 
 577 
After the training phase, the algorithm could predict the class of a given neuron with high 578 
accuracy (total accuracy for the train set 0.9893 - total accuracy for the test set 0.9014), 579 
indicating that the algorithm effectively replicated the classification, and that the computed 580 
weight of each gene to the classification was reliable. Indeed, the predictive power of the 581 
algorithm was above 95% for 6 of the 8 neuronal classes (Fig. 6d). A small number of genes 582 
did drive the overall classification. The added weight of the 1000 genes most contributing to 583 
the classification accounted for 90% of the information carried by the whole transcriptome 584 
(Fig. 6e and Suppl. Table 8). Importantly, over 50% of this top 1000 genes were synaptic 585 
(Suppl. Fig.6b1), a 4x overrepresentation that was highly statistically significant (Chi-square 586 
test, p < 1e-23). Using the synaptic genes in the top 1000 was sufficient to replicate the U-587 
map generated with the entire transcriptome (Fig. 6f). Furthermore, the accuracy of the 588 
Random Forest prediction was better when using all synaptic genes as opposed to the entire 589 
transcriptome and best when using the synaptic genes found in the top 1000 list (Suppl. 590 
Fig.6c).  591 
 592 
Using the Chi-square Stat value, we found that genes expressed at synapses were more 593 
over-represented in genes driving the classification than genes enriched in the PSD65, in the 594 
MASC complex66 or in other functional categories enriched in the top 1000 genes contributing 595 
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to the classification. (Suppl. Fig.6d). Random Forest performance was also good in 596 
classifying neurons into types, although less accurate (total accuracy of the train set 0.8559 597 
and total accuracy of the test set 0.7653, Suppl. Fig. 6e). The list of the top 1000 genes most 598 
relevant to the classification of types also carried over 90% of the weight, and included over 599 
500 synaptic genes (Chi-square test, p < 1e-10, Suppl. Fig6b.2 and Suppl. Table 8). 600 
 601 
pathfindR analysis of synaptic genes in the top 1000 most contributing to the classification of 602 
neuronal classes revealed synaptic functions or locations related to both pre and 603 
postsynaptic compartments (Fig. 6g,h and Suppl. Table 8). Yet, those terms with highest fold 604 
enrichment were mostly related to the function and organization of glutamate receptors (Fig. 605 
6h). Curiously, non-synaptic genes of the top 1000 genes were also associated with some 606 
functions of the nervous system (i.e. Neuron differentiation or Neuroinflammation), among 607 
others.  608 
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 609 
 610 
Figure 6. Expression differences in genes encoding synaptic proteins strongly determine the 611 
classification of excitatory neurons. 612 
a. UMAP graph generated with single-cell RNA abundance data obtained from excitatory neurons in the 8 613 

classes identified in the hippocampal formation. Abundance of all genes in the genome was considered 614 
for the construction of this graph. ProS, prosubiculum; SUB, subiculum, NP SUB; near-projecting 615 
neurons from the subiculum and CT SUB; corticothalamic neurons from the subiculum.  616 

b. UMAP generated as in (a), although in this occasion only genes coding for synaptic proteins were 617 
considered. 618 

c. UMAP generated as in (a), using a random set of genes not expressed at synapses, with the same 619 
number of genes as in the synaptic dataset in (b). 620 

d. Confusion or error matrix generated by the Random Forest algorithm, showing the success rates in 621 
assigning a class to each neuron. Colour legend correspond with the accuracy of the prediction, 1 being 622 
perfect accuracy.  623 

e. Cumulative importance of the expression level of each gene in the genome for the classification of 624 
excitatory neurons into classes. Inset, cumulative Importance of the top 2000 genes with the highest 625 
importance to the classification. Note that the top 1000 contributing genes provide 90% of the 626 
information necessary to construct the classification. 627 
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f. UMAP generated as in (a) but using only the 520 synaptic genes found among the Top 1000 genes 628 
contributing to the classification. 629 

g. Main signalling pathways and biological functions found among genes encoding for synaptic and non-630 
synaptic proteins of the top 1000 that most contribute to the classification of excitatory neurons into 631 
classes. 632 

h. Top 10 signalling pathways with the largest fold enrichment. In yellow those relative to the function of 633 
ionotropic or metabotropic glutamate receptors. In green those relevant to presynaptic function.  634 
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Discussion 635 
Electrophysiological studies show that different synaptic types have unique functional 636 
properties67,68. Yet the molecular basis driving these differences are poorly understood. 637 
Investigating synaptic types at the proteomic level has been extremely challenging, as they 638 
are confined to microscopic brain regions. To overcome this limitation, we have developed a 639 
procedure to obtain microscopic brain samples containing individual synaptic types, and to 640 
extract synaptic proteins from them in sufficient quantity for subsequent high-throughput 641 
proteomics. This method has several advantages, first it provides a great level of anatomical 642 
resolution, since the exact location of collected samples is known. Moreover, it delivers a 643 
wide coverage of the synaptic proteome, identifying proteins from most subsynaptic 644 
compartments. Lastly, it can be used in any species, including humans, as it does not require 645 
prior genomic manipulations. With this approach we have extensively profiled the proteome 646 
of the synaptic types that constitute the trisynaptic circuit of the hippocampus.  647 
 648 
An important conclusion of our proteomics data is that essentially the same proteins are 649 
present in the three synaptic types investigated. This observation is relevant, as it implies 650 
that functional diversity among them arises from changes in the abundance of shared 651 
components. These would result in specific molecular processes being differentially favoured 652 
between synaptic types. For example, it is well-known that CA3-CA1 synapses require 653 
NMDARs activation for LTP expression but DG-CA3 synapses don’t. Several synaptic types 654 
express forms of NMDAR-independent LTP across the brain, and class I metabotropic 655 
glutamate receptors (Grms) are involved in some of them69,70. Indeed, the role of Grm1/5 in 656 
NMDAR-independent LTP at DG-CA3 synapses has been addressed by a few studies, albeit 657 
these returned contradictory results17. Our data provides strong support for a role of Grm1 in 658 
NMDAR-independent LTP in DG-CA3 synapses, as this receptor and several of its 659 
downstream signalling molecules are highly expressed in them. Thus, while all these 660 
molecules are present in both synaptic types, the increased abundance of Grm1 and its 661 
downstream signalling proteins in DG-CA3 synapses would provide them with the ability to 662 
express an NMDAR-independent form of LTP, finetuning the functional properties of this 663 
particular synaptic type. 664 
 665 
Proteins differentially expressed between synaptic types were implicated in many signalling 666 
pathways and biological processes related to synaptic biology. Remarkably, the vast majority 667 
of these were exclusively found in one synaptic type. Suggesting that they could contribute 668 
specific functions to different synaptic types. CA3-CA1 synapses exhibited several 669 
overrepresented pathways directly related with AMPAR traffic, but also to clathrin mediated 670 
endocytosis, the primary mechanism by which AMPARs are removed from the synapse44. 671 
These synapses also displayed many functional categories related to actin polymerization 672 
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and branching, key processes in spine structural plasticity. The non-canonical Wnt/Ca2+ 673 
pathway, which regulates calcium release from internal stores47, was also overrepresented 674 
in this synaptic type. And so were numerous metabolic pathways related to energy production 675 
in CA3-CA1 synapses, suggesting they might have increased energetic demands. Instead, 676 
DG-CA3 synapses were characterised by signalling pathways downstream of class I 677 
metabotropic glutamate receptors. They also exhibited a sticking increase in ribosomal 678 
proteins, likely due to an elevated number of presynaptic ribosomes, as protein translation at 679 
mossy fibre boutons would regulate synaptic plasticity57. They also presented increased 680 
levels of proteins that positively regulate ERK1/2 signalling, a pathway linking ionotropic 681 
glutamate receptors with protein translation. In line with previous findings, showing that 682 
mossy fibre boutons have the highest level of ERK1/2 activation in the hippocampus71. 683 
Furthermore, DG-CA3 synapses presented increased abundance of all 4 proteins organizing 684 
intermediate neurofilaments. These proteins have been confidently identified in synapses54, 685 
being involved in synaptic transmission and plasticity54. Our data indicates that CA3-CA1 and 686 
DG-CA3 synapses would have specific requirements regarding their cytoskeletal function. 687 
Structural plasticity at the level of dendritic spines has been investigated with two-photon 688 
microscopy, albeit in cortical neurons72. However, these studies show considerable 689 
differences between neurons, differences which might arise from different cytoskeletal 690 
compositions. Finally, EC-DG synapses were strongly characterised by a unique ECM, with 691 
increased levels of several proteoglycans and other constituents of the ECM. The synaptic 692 
localization of proteoglycans is also well documented2, contributing to AMPAR traffic73,74 and 693 
synaptic transmission75. Indeed, the ECM as a whole is known to restrict AMPAR mobility76. 694 
 695 
Overall, our proteomic findings provide support for considerable molecular diversity among 696 
the synaptic types of the trisynaptic loop. Impacting multiple domains of synaptic biology, 697 
including the traffic and synaptic stability of AMPARs, spine structural plasticity, signalling 698 
through metabotropic receptors, control of calcium levels, local protein translation or 699 
regulation of the energetic metabolism, among others. However, it is also important to 700 
mention that in all synaptic types we found among differentially expressed proteins molecules  701 
that regulate the function of glutamate receptors. Being that these synaptic types are formed 702 
by 4 different neurons, and that we have shown that gene expression contributes to synaptic 703 
proteome diversity, we decided to investigate if gene expression mechanisms contributed to 704 
the common regulation of these proteins.  705 
 706 
Having first identified the synaptic genes differentially expressed between neuronal types we 707 
next looked for the functional categories most related to them. A first analysis of all these 708 
genes together identified that they mostly localize to two subsynaptic locations, the active 709 
zone and the postsynaptic density. Being involved in synaptic vesicle (SV) exocytosis, and 710 



 26 

the postsynaptic regulation of chemical synaptic transmission, especially the regulation of 711 
neurotransmitter receptor levels at the synapse. Importantly, genes involved in these 712 
processes were differentially expressed in most neuronal types, with each type 713 
overexpressing a subset of them. Therefore, the differential regulation of these proteins is a 714 
common trend among excitatory neurons in the hippocampus and subiculum. In a second 715 
analysis we investigated the signalling pathways overrepresented in independent neuronal 716 
types. These analyses also retrieved many pathways related to glutamate receptor function, 717 
actually, these were the most enriched ones for many neuronal types. Pathways related to 718 
SV exocytosis weakly overrepresented in the analysis of individual neuronal types.   719 
 720 
An orthogonal mathematical approach based on machine learning corroborated the 721 
differential expression of genes related to glutamatergic function between neuronal types. 722 
This approach was employed to identify the genes that contribute the most to 723 
transcriptomics-based neuronal classifications. This analysis demonstrated that genes 724 
involved in glutamatergic function were key to these classifications, as they presented unique 725 
expression patterns across neuronal types. Thus, we propose that the differential regulation 726 
of these genes is a main feature of gene expression programs between neuronal types. This 727 
finding aligns with the recent observation that, in general, synaptic genes contribute to the 728 
classification of cortical neurons63.    729 
 730 
In the present study, we introduce a novel procedure to isolate individual synaptic types and 731 
analyse their proteome. With this method we have been able to identify major molecular 732 
differences between the synaptic types that comprise the trisynaptic circuit. This is an 733 
important resource to advance in our understanding of the molecular mechanisms controlling 734 
their diverse electrophysiological properties. More importantly, our combined investigation of 735 
proteomic and transcriptomic datasets indicates that glutamate receptors and proteins 736 
directly controlling their function, are common drivers of synaptic proteome variability across 737 
synaptic types. Thus having key contributions to the properties of different synaptic types. It 738 
is interesting to note that neuron-specific transcriptional mechanisms would contribute to the 739 
unique expression levels of these proteins.  740 
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Supplementary Figures and Legends 741 

 742 
 743 
Supplementary Figure 1. Strategy used to microdissect the hippocampal layers containing the 744 
synapses of the trisynaptic loop. 745 
a. Drawing of mouse brain showing the localization of the hippocampus, in red. The portion of the dorsal 746 

hippocampus that was analysed in this work is shown in dark red. This covered approximately 500 µm 747 
in the longitudinal axis of the brain. 748 

b. Brightfield image showing the hippocampus in a coronal section of the dorsal mouse brain. The 3 749 
subfields, CA1, CA3 and dDG, investigated in this study are indicated. CA1 and CA3 pyramidal layers 750 
and dDG granular layer are shown differently coloured. Scale bar 1000µm. 751 

c. Anatomical localization and dimensions, particularly width, of the different hippocampal layers from 752 
which we collected microdissected neuropile. Pyramidal and granular layers coloured as in (a). Shapes 753 
delimited by red dashed lines represent examples of microdissected neuropile fragments, where their 754 
width is also shown. Collected fragments in all subfields had 100µm in width, approximately. Neuropile 755 
fragments were collected from the following layers: i) Stratum Radiatum (SR, in blue) in the CA1 756 
subfield, ii) from the Stratum Lucidum (SL, in pale green) in the CA3 subfield and iii) from the Molecular 757 
Layer (ML) at the dorsal Dentate Gyrus.  758 
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 759 
 760 
Supplementary Figure 2. Optimization and validation of the biochemical procedure used to obtain 761 
preparations enriched in synaptic structures and proteins. 762 
a. Protein gel electrophoresis stained with Coomassie Brilliant Blue with 1% Triton X-100 insoluble (Pellet) 763 

and soluble (Supern.) fractions obtained from microdissected neuropile of the three hippocampal 764 
subfields. 8, 6 and 4 µg of precisely quantified protein from hippocampal synaptic fractions isolated by 765 
density gradient ultracentrifugation were used to estimate protein abundance of fractions derived from 766 
microdissected neuropile. 767 

b. Quantification of signal intensity of gel lanes in (a) and estimation of protein abundance in biochemical 768 
fractions from microdissected neuropile. 769 

c. Percentage of total protein from microdissected neuropile recovered in 1% Triton X-100 soluble 770 
(Supern.) and insoluble (Pellet) fractions. Statistics, unpaired T-Test, **** < 0.0001. 771 
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d. d.1. Silver-stained protein gel with biochemical fractions insoluble to 1% Triton X-100 or RIPA buffer 772 
obtained from increasing areas (mm2) of microdissected neuropile. 10µg of quantified protein from 773 
hippocampal synaptic fractions isolated by density gradient ultracentrifugation were added to the gel for 774 
reference. d.2. Bar chart with signal intensity from gel lanes in d.1.  775 

e. Percentage of protein recovered in the pellet fractions of microdissected tissue treated with a buffer 776 
containing 1% Triton X-100 (dark red column), 2% Triton X-100 (red column) or with a RIPA buffer (light 777 
red column). Statistics, One-way ANOVA and Fisher’s LSD post-hoc test, * p < 0.05. 778 

f. Immunoblot of Triton and RIPA insoluble (Pellet) and soluble (Supern.) fractions obtained from 779 
hippocampal microdissected neuropile. Proteins investigated are Psd95, mostly insoluble to triton and 780 
Synaptophysin (Syp) a synaptic vesicle protein, mostly soluble to triton. 781 

g. Bar plot of Psd95 (grey bars) and Synaptophysin (Syp, white bars) abundance as determined by 782 
immunoblot of 1% Triton X-100 soluble fractions from microdissected hippocampal neuropile. Statistics, 783 
unpaired T-test, * p < 0.05. 784 

h. Protein gel electrophoresis of 1% Triton X-100 insoluble pellets stained with Coomassie Brilliant Blue. 785 
5 gel bands (B1-B5) were collected and processed independently in the proteomics workflow. 786 

i. Protein gel electrophoresis of synaptic preparations isolated by density gradient ultracentrifugation from 787 
mouse hippocampi stained with Coomassie Brilliant Blue. 13 bands (B1-B13) were collected and 788 
processed independently in the proteomics workflow to generate a synaptic reference proteome. 789 

j. j.1. Immunoblots of a transsynaptic protein involved in cell adhesion (Cdh2, cadherin 2), a postsynaptic 790 
scaffolding molecule (Psd95), and three presynaptic proteins located at: i) active zone (Rims2), SNARE 791 
complex (Stx1a) and synaptic vesicles (Vamp1). Samples analysed are whole extract (Homogenate) 792 
and triton soluble (Supernatant) and insoluble (Pellet) fractions from microdissected hippocampal 793 
neuropile. j.2. Abundance of proteins in m.1. relative to their abundance in the homogenate fraction. 794 
Statistically significant difference in protein abundance between the supernatant and pellet fractions is 795 
indicated. Statsitcs, unpaired T-test, * p < 0.05, ** p < 0.01.   796 
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 797 
 798 
Supplementary Figure 3. Most Signalling Pathways and Gene Ontology (GO) terms found in proteins 799 
differentially expressed between synaptic types are synapse-specific. 800 
a. Proportion of proteins identified by proteomics with a statistically significant highest expression in one 801 

of the three synaptic types investigated. 802 
b. Ratio of significantly overrepresented terms per differentially expressed (DE) protein in each sample 803 

investigated. Signalling pathways (blue bars) investigated are from the databases Reactome, KEGG 804 
and Wikipathways. Gene ontology (GO, orange bars) terms investigated belong to the domains Cellular 805 
Component, Biological Process and Molecular Function. 806 

c. Percentage of differentially expressed proteins contributing to signalling pathways (blue bars) and GO 807 
terms (orange bars). 808 

d. Number of signalling pathways significantly overrepresented in 3, 2 or 1 hippocampal layers. 809 
e. Number of significantly overrepresented GO terms among proteins with highest expression in 3, 2 or 1 810 

hippocampal layer. 811 
f. Heatmaps showing relative protein abundance in the 9 samples analysed by proteomics, three 812 

biological replicates per hippocampal layer, analysed in our proteomics workflow. High abundance 813 
shown in red and low in blue. Abundance of proteins in four pathways/terms found significantly enriched 814 
in all three hippocampal regions is presented.  815 



 31 

 816 
Supplementary Figure 4. Significantly up-regulated genes are more specific to neuronal classes and 817 
types than down-regulated ones. 818 
a. Heatmap presenting normalized (z-score) mean RNA abundance of genes coding for ribosomal proteins 819 

from the 4 classes of excitatory neurons that constitute the trisynaptic loop in the dorsal (do) 820 
hippocampus (CA1do, CA3do, dentate gyrus -DG- and entorhinal cortex -EC-). All ribosomal gens 821 
showing statistically significant RNA expression differences were upregulated in the DG (top panel). 822 
Many genes for which expression differences did not reach statistical significance also display a 823 
tendency for increased expression in the DG (bottom panel). RNA expression data obtained from the 824 
Allen Brain Cell Atlas (REFF). Statistical analysis of RNA expression differences between neuronal 825 
classes was performed with the Seurat R package and the Wilcoxon Rank Sum test. Abundance scale, 826 
2 (dark red) to -2 (dark blue). 827 

b. Number of genes expressed at synapses found significantly up- (blue bars) or down- regulated (orange 828 
bars) in classes of excitatory neurons from the hippocampal formation. 829 

c. Frequency of differentially expressed genes among different gene sets. Including genes expressed at 830 
synapses (synaptic), genes not expressed at synapses (Non-synaptic), a random set of all genes of the 831 
same size of the synaptic set (Control 1) and a random set of non-synaptic genes of the same size of 832 
the synaptic set (Control 2). Statistics, Chi square Test, **** p < 0.0001, ** p < 0.01 and * p < 0.05. 833 
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d. Percentage of gens localized to synapses that are upregulated in one (blue), two (orange), or three 834 
(grey) classes of excitatory neurons. 835 

e. Percentage of gens localized to synapses that are downregulated in one (blue), two (orange), three 836 
(grey), four (yellow) or five (light blue) classes of excitatory neurons. 837 

f. Percentage of genes expressed at synapses being up-regulated (blue line) or down-regulated (orange 838 
line) in 1 or 2 excitatory neuron types from the hippocampal formation.  839 
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 840 
Supplementary Figure 5. Computational strategy for the identification of genes encoding synaptic 841 
proteins having increased expression in excitatory neuronal classes and types. 842 
a. Heatmap showing relative RNA abundance data across all excitatory neuronal classes for genes found 843 

upregulated in each class. 844 
b. Heatmap showing relative RNA abundance data across types of CA1 excitatory neurons for genes 845 

found upregulated in each type. 846 
c. Heatmap showing relative RNA abundance data across types of CA1-ProS excitatory neurons for genes 847 

found upregulated in each type. 848 
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d. Heatmap showing relative RNA abundance data across types of dentate gyrus (DG) excitatory neurons 849 
for genes found upregulated in each type. 850 

e. Heatmap showing relative RNA abundance data across types of CA3 excitatory neurons for genes 851 
found upregulated in each type. 852 

f. Heatmap showing relative RNA abundance data across types of SUB-ProS excitatory neurons for genes 853 
found upregulated in each type. 854 

g. Heatmap showing relative RNA abundance data across types of CT-SUB excitatory neurons for genes 855 
found upregulated in each type. 856 

h. Heatmap showing relative RNA abundance data across types of NP-SUB excitatory neurons for genes 857 
found upregulated in each type. 858 

i. Heatmap showing relative RNA abundance data across the two types of CA2 excitatory neurons for 859 
genes found upregulated in each type.   860 
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 861 
 862 
Supplementary Figure 6. Compared analysis of the importance of different gene sets for the 863 
classification of excitatory neurons into classes and types shows genes encoding synaptic proteins 864 
are highly relevant.  865 
a. UMAP graph generated with single-cell RNA abundance data obtained from excitatory neurons in the 8 866 

classes identified in the hippocampal formation This graph was generated with expression data from 867 
genes not expressed at synapses.  868 

b. b.1. Proportion of genes with synaptic (blue) or non-synaptic (orange) localization among the top 1000 869 
genes contributing to the classification of neuronal classes. b.2. Proportion of genes with synaptic (blue) 870 
or non-synaptic (orange) localization among the top 1000 genes contributing to the classifications of 871 
neuronal types. 872 

c. Bar plot showing total accuracy in neuronal class prediction determined by the Random Forest machine 873 
learning method using different gene sets to train the algorithm: i) all gens in the dataset, ii) genes with 874 
a synaptic localization, iii) all genes with a non-synaptic localization, iv) a set of randomly selected genes 875 
not found at the synapse and of the same size of the set of genes localized at synapses and v) the set 876 
of 520 genes expressed at synapses among the 1000 genes mostly contributing to neuronal 877 
classification. 878 

d. Bar plat with the Chi square statistic obtained from Chi square tests of overrepresentation of different 879 
gene sets among the 1000 genes mostly contributing to neuronal classification. 880 

e. Confusion or error matrix generated by the Random Forest algorithm, showing the success rates in 881 
assigning a neuronal type to each neuron. Colour legend correspond with the accuracy of the prediction, 882 
1 being maximum accuracy.  883 
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Supplementary Tables Legends 884 
 885 

Supplementary Table 1. Synaptic hippocampal proteomes characterised in this 886 

study. 887 
Sheet #1: Proteins identified by our proteomics workflow from a biochemical preparation 888 

of postsynaptic density fractions from total hippocampus. 889 

Sheet #2: Reference synaptic proteome used in this study. Produced by combining 890 
proteins in sheet #1 with those previously identified in a PSDII fraction published by 891 

Distler et al. 892 

Sheet #3: List of all proteins identified by the Scaffold software from MS/MS data in 893 
synaptic fractions from the three hippocampal layers. Proteins common with the 894 

reference proteome are indicated. Proteins identified by the Progenesis software with at 895 

least two unique peptides are also indicated. 896 
Sheet #4: Proteins identified by scaffold in only one of the three synaptic types studied. 897 

 898 
Supplementary Table 2. Analysis of protein abundance and differential protein 899 
expression between synaptic types. 900 

Sheet#1: Protein abundance data generated by MSqROB from peptide abundance data. 901 
Sheet#2: Left of black bar, Proteins with statistically highest expression in one synaptic 902 
type. Statistics, one-way ANOVA. FDR correction for multiple testing was performed. 903 

Log2 of Fold Chance (FC) and corrected p-values (q-value) are provided. Right of black 904 
bar, Protein abundance differences between pairs of synaptic types. Statistics, Student’s 905 
T-test. FDR correction for multiple testing was performed. Log2 of Fold Chance (FC) and 906 
corrected p-values (q-value) are provided.  907 

 908 
Supplementary Table 3. Comparative analysis of protein and RNA expression data 909 
from proteins differentially expressed in synapses from the trisynaptic loop. 910 

Sheet#1: Allen Brain Atlas (ABA) in situ hybridization (ISH) data was manually inspected 911 
for each of the 283 proteins showing differential expression in one of the synapses from 912 
the trisynaptic loop (columns E to G). We determined in how many of the 4 brain regions 913 

forming the synapses from the trisynaptic loop (Entorhinal cortex Layer II, dDG, CA3 and 914 

CA1) was ISH data highest (columns H to K). We compared this information with our 915 
proteomics data and stablished if expression levels were concordant or not with protein 916 

levels at synapses (column M). 917 

Sheet#2: Synaptic genes significantly up or down regulated in excitatory neurons from 918 
one of the 4 brain subregions constituting the trisynaptic circuit of the hippocampus: CA1 919 

(dorsal), CA3 (dorsal), dentate gyrus and entorhinal cortex. RNA sequencing data taken 920 
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from the Allen Brain Cell atlas (ABCA). The ABCA distinguishes dorsal from ventral 921 
neurons in the CA1 and CA3 subfields. As the proteomics data was generated from the 922 

dorsal hippocampus we selected dorsal neurons form the ABCA for this analysis. Log2 923 

fold changes and p-values are indicated.  924 
 925 

Supplementary Table 4. Signalling pathways and GO terms significantly 926 

overrepresented in proteins with highest expression in one synaptic type. 927 
Sheet#1: The analysis with PathfindR retrieved the following Signalling Pathways as 928 

significantly overrepresented amongst protein with highest expression in each synaptic 929 

type. Signalling pathways were retrieved from the following databases: Reactome, 930 
KEEG and Wikipathways (WP). Fold enrichments are provided, these are calculated as 931 

the number of proteins observed in a pathway or term relative to the number expected 932 

by chance. The PathfindR metrics occurrence, support, lowest and highest p-values, 933 
cluster and status are also provided. Protein with no expression difference between 934 

synapses belonging to each pathway are also shown (column K). Proteins from each 935 
pathway with highest expression in one synaptic type are indicated (column L).   936 
Sheet#2: The analysis with PathfindR retrieved the following GO terms as significantly 937 

overrepresented amongst protein with highest expression in each synaptic type. GO 938 
terms from the following domains were investigated: Molecular Function (GOMF), 939 
Biological Process (GOBP) and cellular component (GOCC). Fold enrichments are 940 

provided, these are calculated as the number of proteins observed in a pathway or term 941 
relative to the number expected by chance. The PathfindR metrics occurrence, support, 942 
lowest and highest p-values, cluster and status are provided. Proteins with no expression 943 
difference between synapses belonging to each term are shown (Col. K). Proteins from 944 

each term with highest expression in one synaptic type are indicated (Col. L). 945 
Sheet#3: Summary of pathways and terms identified as ‘Representative’ for networks 946 
(clusters) of proteins with highest expression in different synaptic types, as determined 947 

by PathfindR. A representative pathways or term is the one with the lowest p-value 948 
amongst those identified for a protein network. 949 
 950 

Supplementary Table 5. Genes coding for synaptic proteins that have differential 951 

RNA expression levels between neuronal classes. 952 
Sheet#1: Table with the number of genes found with a statistically significant up- or 953 

down-expression in each neuronal class. 954 

Sheet#2: List of genes significantly up- or down-regulated in each class. The ratio of 955 
genes up vs. down-regulated is also provided. 956 

Sheet#3: List of genes significantly up-regulated in one or two classes. 957 
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 958 
Supplementary Table 6. Genes coding for synaptic proteins that have differential 959 

RNA expression levels between neuronal types of the same class. 960 

Sheet#1: Table with the number of genes found with a statistically significant up- or 961 
down-expression between neuronal types of each class. Neuronal type names as 962 

previously published. 963 

Sheets#2, 4, 6, 8,10, 12, 14 and 16: Lists of genes significantly up- or down-regulated 964 
between neuron types of each of the eight classes investigated. 965 

Sheets#3, 5, 7, 9,11, 13, 15 and 17: List of genes significantly upregulated in one or two 966 

neuronal types within each class. 967 
Sheet#18: Summary table of genes coding for synaptic proteins significantly upregulated 968 

in one or two neuronal types. 969 

 970 
Supplementary Table 7. Signalling pathways and GO terms enriched among genes 971 

upregulated in different neuronal types.  972 
Sheet#1: List of representative pathways from the databases Reactome, KEGG and 973 
Wikipathways identified by pathfindR for synaptic genes upregulated in different 974 

neuronal types. 975 
Sheet#2: List of representative GO terms identified by pathfindR for synaptic genes 976 
upregulated in different neuronal types. 977 

  978 
Supplementary Table 8. Top 1000 genes contributing to the transcriptomics-based 979 
classification of excitatory neurons and analysis of the signalling pathways and 980 
GO terms associated to them. 981 

Sheet#1: List of the 1000 proteins mostly contributing to the classification of excitatory 982 
neurons into classes, as determined by the Random Forest method.   983 
Sheet#2: List of the 1000 proteins mostly contributing to the classification of excitatory 984 

neurons into types, as determined by the Random Forest method. 985 
Sheet#3: Representative terms (Signalling Pathways and GO terms) identified by 986 
Pathfinder from the synaptic genes among the top 1000 most contributing to the 987 

classification of excitatory neurons.  988 

Sheet#4: Representative terms (Signalling Pathways and GO terms) identified by 989 
Pathfinder from the non-synaptic genes among the top 1000 most contributing to the 990 

classification of excitatory neurons.  991 

Sheet#5: Summary of the synaptic and non-synaptic terms used in Figure 6g and h.  992 
 993 

Supplementary Video. Manual dissection of hippocampal subfields.  994 
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Methods 1181 
 1182 
Animal handling 1183 
All animal research was done with C56BL/6J mice (Jackson Laboratories, Research Resource 1184 
Identifier, RRID:MGI:5656552) and in accordance with national and European legislation (Decret 1185 
214/1997 and RD 53/2013). Research procedures were approved by the Ethics Committee on 1186 
Animal Research from the Institut de Recerca de l´Hospital de la Santa Creu i Sant Pau (IR-1187 
HSCP) and the Departament de Territori i Sostenibilitat from the Generalitat de Catalunya 1188 
(approval reference num. 9,655). Maintenance and experimental procedures were conducted at 1189 
the Animal Facility of the IR-HSCP. Mice were housed at a 12h light/dark cycle, with fresh water 1190 
and food ad libitum. We used animals of both sexes and 9-14 weeks of age. 12 animals were 1191 
used for laser-capture microdissection proteomics experiments, 2 to isolate postsynaptic density 1192 
fractions using sucrose gradients and 12 for manual hippocampal dissection and preparation of 1193 
triton insoluble membranes. 1194 
 1195 
Mouse brain dissection 1196 
Mice were culled by cervical dislocation, the head was dissected, and brain removed from skull 1197 
and meninges. All brain dissection manipulations were done in the presence of chilled 1x 1198 
phosphate-buffered saline (PBS, 0.144 M NaCl, 2.683 mM KCl, 10.144 mM Na2HPO4, 0.735 mM 1199 
KH2PO4, [P5368-10PAK from Sigma]). Cerebellum and olfactory bulb were removed prior to any 1200 
other manipulation. For laser-capture microdissection the forebrain was wrapped in aluminium 1201 
foil, snap frozen in liquid nitrogen and stored at -80C. For isolation of postsynaptic density (PSD) 1202 
fractions by ultracentrifugation hippocampi were dissected using iris scissors (PMD120; Thermo 1203 
Scientific), tissue forceps 1:2 (PMD023445; Thermo Scientific) and scalpel blades in chilled glass 1204 
petri dishes. Entire hippocampi were frozen at -80C before processing. For manual dissection of 1205 
CA1, CA3 and DG regions readily dissected hippocampi were first cut coronally in 500 µm slices 1206 
in the presence of chilled 1x PBS using a tissue slicer (Kerr Scientific Instruments). 8-12 slices 1207 
where obtained from each hippocampus. Slices were immediately transferred into a glass petri-1208 
dish with chilled 1x PBS using a small paint brush. Next CA1, CA3 and DG regions were manually 1209 
separated from each other using 18G needles (BD) under a microscope Carl Zeiss Meditec model 1210 
S100 / OPMI 1-FC (see Supplementary Video for a demonstration of manual dissection of 1211 
hippocampal regions). Dissected regions were placed in individual tubes containing chilled 1212 
homogenization buffer with phosphatase and protease inhibitors (0,32M Sucrose; 10mM HEPES 1213 
pH 7,4; 2mM EDTA; 5mM sodium o-vanadate; 30mM NaF; 2µg/ml aprotinin; 2µg/ml leupeptin 1214 
and 1:2000 PMSF (v/v)) with a pasteur pipette and frozen dry at -80C.  1215 
 1216 
Laser-capture microdissection of neuropil from hippocampal CA3-CA1, DG-CA3 and EC-1217 
DG regions 1218 
Frozen forebrains were used to obtain 10 µm thick coronal sections in a Leica CM1950 cryostat. 1219 
Only sections that contained the dorsal hippocampus (Fig. S1a) were processed by laser-capture 1220 
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microdissection. Sections were placed in membraneSlide 1.0 PEN microscope slides (Zeiss, 1221 
415190-9041-000) and stored at -20C. The neuropil of CA1, CA3 and dorsal DG were 1222 
microdissected using a Leica LMD 6000 laser microdissection microscope. Between 90 and 110 1223 
mm2 were microdissected for each hippocampal region and biological replica. Three biological 1224 
replicas where generated for each area. All microdissected tissue for each replica was collected 1225 
in the same 1.5ml tube.  1226 
 1227 
Biochemical isolation of synaptic fractions from laser-capture microdissected tissue 1228 
Laser-capture microdissected tissue was collected in 1.5 ml tubes and mixed with PBS containing 1229 
1% Triton X-100, 2µg/ml leupeptin and 1/2500 PMSF. The sample was then sonicated in an 1230 
ultrasonic bath (Branson 1510) for 2 min, incubated in agitation (300rpm) in a ThermoMixer C 1231 
(Eppendorf) for 30 min at 35C and sonicated again as previously. Afterwards, sample was 1232 
centrifuged for 10 min at 21.000xg at 4C in a Eppendorf refrigerated centrifuge (5417R). The 1233 
pellet was resuspended in PBS with 1% SDS. The resuspended pellet and supernatant were 1234 
mixed with 10x SDS sample buffer for analysis by proteomics or immunoblot. Tissue extraction 1235 
was also performed with a RIPA buffer containing PBS, 0.1% SDS, 0.5% sodium deoxycholate 1236 
and 1% Triton X-100. 1237 
 1238 
Biochemical isolation of synaptic enriched fractions from manually dissected 1239 
hippocampal regions. 1240 
Manually dissected hippocampal subregions (CA1, CA3, dDG; see Supplemenatry Video) from 3 1241 
animals where accumulated for each biological replica. A total of four biological replicas were 1242 
prepared for each region. CA1 samples were homogenized in 450µl of homogenizing buffer (HB), 1243 
CA3 and DG in 300µl. Homogenizing buffer composition: 0,32M Sucrose; 10mM HEPES pH 7,4; 1244 
2mM EDTA; 5mM sodium o-vanadate; 30mM NaF; 2µg/ml aprotinin; 2µg/ml leupeptin and 1:2000 1245 
PMSF (v/v). Homogenization was performed in 1ml borosilicate tissue homogenizers (357538, 1246 
Wheaton), using 20-30 strokes. The homogenate was centrifugated in 1.5ml tubes at 800xg and 1247 
4C for 10 min in a Eppendorf refrigerated centrifuge (5417R). The pellet, containing the nuclear 1248 
fraction and cell debris, was re-homogenized once in the same buffer and centrifuged in the same 1249 
conditions. Supernatants from both centrifugations were pooled and spun down at 10.000xg for 1250 
15 min at 4C in the same centrifuge. The resulting pellet was resuspended in Triton buffer (TB: 1251 
50mM HEPES pH7.4; 2mM EDTA; 5mM EGTA; 1mM sodium o-vanadate; 30mM NaF; 1% Triton 1252 
X-100; 2µg/ml aprotinin; 2µg/ml leupeptin and 1:2000 PMSF (v/v)). TB volume used was ½ HB. 1253 
This mixture was left in ice for 15 minutes and centrifuged at 21.000xg for 30 min at 4C in the 1254 
same centrifuge. The resulting pellet was resuspended with 30µl of 50mM Tris pH 7.1; 1% SDS 1255 
and incubated with this buffer for 15 min at room temperature. A final centrifugation was done at 1256 
21.000xg for 15 min at room temperature. The resulting supernatant corresponds with the 1257 
postsynaptic density enriched fraction. 1258 
 1259 
Biochemical isolation of postsynaptic density fractions from whole hippocampus 1260 
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Isolation of postsynaptic density fractions using standard procedures, which involve the 1261 
separation of synaptosomes on the bases of their sedimentation rate in sucrose density gradients, 1262 
was performed as previously described6,9,65. Briefly, the hippocampi from two mice were 1263 
homogenized in 1ml borosilicate tissue homogenizers (357538, Wheaton) adding 9ml of 1264 
homogenizing buffer for each 1g of tissue weight. Homogenization was done with 20-30 strokes. 1265 
Homogenizing buffer composed of: 0,32M Sucrose; 10mM HEPES pH 7,4; 2mM EDTA; 5mM 1266 
sodium o-vanadate; 30mM NaF; 2µg/ml aprotinin; 2µg/ml leupeptin and 1:2000 PMSF (v/v). This 1267 
sample was first centrifuged at 1400xg and 4C for 10 minutes in an Eppendorf refrigerated 1268 
centrifuge (5417R). The pellet of this centrifugation was re-homogenized twice following the same 1269 
procedure. The three supernatants generated were pooled and centrifuged at 700xg for 10 1270 
minutes, the pellet was discarded. Next, the sample was centrifuged at 21.000xg for 30 minutes 1271 
at 4C in the same centrifuge. The resulting pellet was resuspended with Tris 50mM pH7.4 and 1272 
0,32M sucrose. A sucrose gradient was prepared with 1 ml of (top to bottom): sample; 50 mM 1273 
Tris pH 7.4, 0.85 M sucrose; 50 mM Tris pH 7.4, 1 M sucrose; 50 mM Tris pH 7.4, 1.2 M sucrose. 1274 
This gradient was centrifuged in a SW60Ti rotor (Beckman Coulter) at 82.500xg for 2 hours. The 1275 
1.0-1.2 interphase was collected, diluted with 2 equal volumes of 50mM Tris pH 7.4, and 1276 
centrifuged at 21.000xg for 30 minutes at 4C. The subsequent pellet was resuspended in 50mM 1277 
Tris pH 7.4, 1% Triton X-100 and maintained in ice for 10 min. This sample was centrifuged at 1278 
21,000xg during 30 min at 4C, the resulting pellet corresponds with the fraction enriched with 1279 
postsynaptic densities. 1280 
 1281 
Protein electrophoresis and Immunoblot 1282 
Sample preparation for protein electrophoresis and immunoblot was accomplished by mixing it 1283 
with 10x SDS loading sample buffer, composition: 500mM Tris pH7.4; 20% SDS; 50% glycerol 1284 
and 10% b-mercaptoethanol. Prior to its analysis samples were boiled at 95C for 5 min. 1285 
 1286 
SDS-PAGE gels were runed in a vertical MiniProtean system kit (Bio-rad) with 1× running buffer 1287 
(25 mM TRIS pH 8.4; 0.187 M glycine and 0.1% SDS). Protein standards used were All blue 1288 
Precision Plus (Bio-Rad). For LC-MS/MS analysis protein gels were stained over night at room 1289 
temperature with Coomassie solution (B8522-1EA; Sigma-Aldrich) and washed with 2.5% acetic 1290 
acid and 20% methanol and subsequent washes of 20% methanol, until protein bands were 1291 
clearly visible. For immunoblot TGX Stain-Free™ gels (161-0181 & 161-0185, SF gels; Bio-Rad) 1292 
were used and activated as recommended by the manufacturer. Gel images were acquired with 1293 
ChemiDoc XRS+ (Bio-Rad) and quantified with Image Studio Lite ver. 3.1 (LI-COR Biosciences). 1294 
 1295 
Protein transference was done using a MiniProtean kit (Bio-Rad), and 1× chilled transference 1296 
buffer (20% methanol; 39 mM Glycine; 48 mM TRIS; 0.04% SDS). Proteins were transferred onto 1297 
methanol pre-activated polyvinylidene fluoride (PVDF) membranes (IPFL00010, Immobilon-P; 1298 
Merck-Millipore). Membranes transferred from TGX Stain-Free™ gels were imaged and 1299 
quantified for posterior normalization with a ChemiDoc XRS+ (Bio-Rad) using the Image Lab 1300 
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software (Bio-Rad). After transference, PVDF membranes were blocked with 5ml Odissey 1301 
blocking solution (927-50000; LI-COR) diluted with 1× tris-buffered saline (TBS, 50 mM Tris 1302 
pH7.4; NaCl 150mM and 0.1% sodium azide). Next, membranes were incubated with primary 1303 
antibodies in Tween-TBS (T-TBS: 0,1% Tween 20 - TBS) ON at 4C or 1 hour at room temperature. 1304 
Primary antibodies used: PSD95 (#3450; Cell Signaling, [RRID:AB_2292883]); Synaptophysin 1305 
(Ab8049; Abcam [SY38], [RRID:AB_2198854]); GluA2 (MAB397; Millipore [RRID:AB_2113875]; 1306 
Shisa6 (NBP2-85726; Novus Biologicals); mGluR2 (# 191 103; Synaptic Systems 1307 
[RRID:AB_2232859]; Prkar2a (ab32514; Abcam [RRID:AB_777289]); Ptprd (NBP2-94767; 1308 
Novus Biologicals). Antibody dilution was 1:1000 except for mGluR2,Ptprd, Prkar2a (1:500) and 1309 
Shisa6 (1:250). Membranes were washed four times with 1× T-TBS for 5 min before incubation 1310 
for 1 hr at room temperature protected from light with 5 ml of the following secondary antibodies 1311 
prepared in T-TBS at a dilution of 1:7.500: anti-rabbit (926-68073, IRDye 680CW, 1312 
[AB_10954442]), anti-mouse (926-32212, IRDye 800CW [RRID:AB_621847] or 925-68072, 1313 
IRDye 680RD, [RRID:AB_2814912]) and anti-goat (926-32214, IRDye 800CW, 1314 
[RRID:AB_621846]). Images were acquired with an Odissey Scanner (LI-COR Biosciences) and 1315 
protein bands were analyzed with Image Studio Lite ver. 3.1 (LI-COR Biosciences). Protein 1316 
abundance in postsynaptic density enriched fractions was normalized by the abundance of 1317 
PSD95, a marker of postsynaptic densities, in order to correct for purity differences between 1318 
samples.  1319 
 1320 
Sample processing for mass spectrometry analysis 1321 
Synaptic fractions obtained from laser-captured microdissected tissue or PSD fractions generated 1322 
with standard procedures were analysed by conventional protein gel electrophoresis in 6% 1323 
polyacrylamide gels. For LCM samples gels were runed to half their length and stained with 1324 
Coomassie as described above. After distaining LCM samples were was cut into 5 bands of the 1325 
same size (Suppl Fig. 2h). PSD samples were separated into 13 electrophoretic bands (Suppl 1326 
Fig. 2i). Next, gel bands were cut into 1x1 mm cubes with a scalpel blade in an ethanol cleaned 1327 
glass plate and under a laminar flow hood. Gel cubes were transfer to 1.5ml tubes for proteomic 1328 
analysis (0030 123 328; Eppendorf). 50 mM bicarbonate ammonic (BA) in 50% ethanol was 1329 
added to each tube and incubated for 20 min at room temperature. This solution was replaced 1330 
with absolute ethanol and incubated 15 more min. For protein reduction gel cubes were mixed 1331 
with freshly prepared 10mM DTT (dithiothreitol; Merck) in 50mM BA and incubated 1 h at 56C. 1332 
For protein alkylation, DTT was removed and freshly prepared 55mM IAA (iodacetamide; Merck) 1333 
in 50mM BA added, incubation was performed in the dark for 30 minutes at room temperature. 1334 
IAA was removed, 25mM BA added to gel cubes and incubated in the dark for 15 min. For in-gel 1335 
protein digestion reduced and alkylated samples were mixed with 25 mM BA-50% acetonitrile 1336 
(ACN) and incubated 15 min twice. Gel cubes were dehydrated with 100% ACN for 10 min. Next, 1337 
trypsin (Promega) containing solution was prepared and incubated with gel cubes ON at 30C. 1338 
Tryptic peptides were extracted from gel cubes by first adding 100% ACN and incubating 15 min 1339 
at 37C. Later, 0.2% trifluoroacetic acid (TFA) was added and incubated for 30 min. Supernatants 1340 
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were transferred to 0.5 ml tubes (#0030 123 301; Eppendorf) previously washed with ACN to 1341 
prevent peptide binding to the walls. Liquid-phase was evaporated using a SpeedVac (Thermo-1342 
Fisher Scientific). Dried peptides were resuspended in 5% ACN and 0.1% formic acid and bath 1343 
sonicated for 2 min. Samples were then centrifuged at maximum speed to remove possible gel 1344 
remainings. Samples were stored at -20C. 1345 
 1346 
Mass spectrometry analysis of tryptic peptides  1347 
Tryptic peptides were analysed by LC-MS/MS using an EASY-nLC system (Proxeon Biosystems, 1348 
Thermo Fisher Scientific) connected to a Velos-Orbitrap mass spectrometer (Thermo Fisher 1349 
Scientific, Bremen, Germany). Instrument control was performed using Xcalibur software 1350 
package, version 2.1.0 (Thermo Fisher Scientific, Bremen, Germany). First, peptide mixtures 1351 
were fractionated by on-line nanoflow liquid chromatography with a two-linear-column system. 1352 
Digests were loaded onto a trapping guard column (EASY-column, 2 cm long, ID 100 μm, packed 1353 
with Reprosil C18, 5 μm particle size from Proxeon, Thermo Fisher Scientific) at a maximum 1354 
pressure of 160 Bar. Then, samples were separated on the analytical column (EASY-column, 10 1355 
cm long, ID 75 μm, packed with Reprosil, 3 μm particle size from Proxeon, Thermo Fisher 1356 
Scientific). Elution was achieved by using a mobile phase from 0.1% formic acid and 100% 1357 
acetonitrile with 0.1% formic acid and applying a linear gradient from 5 to 35% of buffer B for 120 1358 
minutes at a flow rate of 300 nL/min. Ions were generated applying a voltage of 1.9 kV to a 1359 
stainless-steel nano-bore emitter (Proxeon, Thermo Fisher Scientific), connected to the end of 1360 
the analytical column. The LTQ Orbitrap Velos mass spectrometer was operated in data-1361 
dependent mode. A scan cycle was initiated with a full-scan MS spectrum (from mass to charge 1362 
[m/z] 300 to 1600) acquired in the Orbitrap with a resolution of 30,000. The 20 most abundant 1363 
ions were selected for collision-induced dissociation fragmentation in the linear ion trap when their 1364 
intensity exceeded a minimum threshold of 1000 counts, excluding singly charged ions. 1365 
Accumulation of ions for both MS and MS/MS scans was performed in the linear ion trap, and the 1366 
AGC target values were set to 1 × 106 ions for survey MS and 5000 ions for MS/MS experiments. 1367 
The maximum ion accumulation time was 500 and 200 ms in the MS and MS/MS modes, 1368 
respectively. The normalized collision energy was set to 35%, and one microscan was acquired 1369 
per spectrum. Ions subjected to MS/MS with a relative mass window of 10 ppm were excluded 1370 
from further sequencing for 20 s. For all precursor masses a window of 20 ppm and isolation width 1371 
of 2 Da was defined. Orbitrap measurements were performed enabling the lock mass option (m/z 1372 
445.120024) for survey scans to improve mass accuracy. 1373 
 1374 
LC-MS/MS data was analysed and normalized using Progenesis software (Nonlinear Dynamics, 1375 
Newcastle, UK). This software allows review of the chromatogram alignments, filtering the data, 1376 
review peak picking, normalize the data and identify peptides among other features. Specifically, 1377 
sample ions were automatically aligned to compensate for drifts in retention time between runs. 1378 
Yet, they were also reviewed and edited manually. The peak picking limits were automatic, the 1379 
main ion charge selected was set at 4 and the retention time limits were adjusted according the 1380 
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chromatograms in each sample. Peptide ions were filtered by removing those with a charge of 1 1381 
or >4, m/z from 300 to 1,600 and the specific retention determined for each case was also set. A 1382 
normalization step was conducted as it was required to allow comparisons across different sample 1383 
runs. This normalization was done by assuming that a significant number of peptide ions are 1384 
unaffected by experimental conditions and the factor by which the sample as a whole varies was 1385 
used to normalize back to its reference sample in each band from all genotypes analysed. 1386 
 1387 
Database search of mass spectrometry data 1388 
All MS/MS samples were analysed using Mascot (Matrix Science, London, UK; version"2.5.1). 1389 
Mascot was searched with a fragment ion mass tolerance of 0,80 Da and a parent ion tolerance 1390 
of 10,0 PPM. Charge state deconvolution and deisotoping were not performed. MS/MS spectra 1391 
were searched with a precursor mass tolerance of 10 ppm, fragment tolerance of 0.5-0.8 Da, 1392 
trypsin specificity with a maximum of 2 missed cleavages, cysteine carbamidomethylation set as 1393 
fixed modification (up to 57) and methionine oxidation as variable modification (up to 16). The 1394 
quantification method applied to quantify protein abundances was a label-free based approach.  1395 
 1396 
Criteria for protein identification by mass spectrometry data 1397 
Scaffold (version Scaffold_4.8.5, Proteome Software Inc., Portland, OR) was used to validate 1398 
MS/MS based peptide and protein identifications obtained from Mascot. Peptide identifications 1399 
were accepted if they could be established at greater than 95,0% probability by the Peptide 1400 
Prophet algorithm77 with Scaffold delta-mass correction. Protein identifications were accepted if 1401 
they could be established at greater than 99,0% probability and contained at least 2 identified 1402 
peptides. Protein probabilities were assigned by the Protein Prophet algorithm78. Proteins that 1403 
contained similar peptides and could not be differentiated based on MS/MS analysis alone were 1404 
grouped to satisfy the principles of parsimony. 1405 
 1406 
Peptide and protein quantification 1407 
Peptide abundances were calculated and normalized using Progenesis, which integrates the area 1408 
under the curve (AUC) of MS1 peaks for peptide quantification. Normalized peptide abundances 1409 
were exported from Progenesis and peptides from proteins not identified by Scaffold were 1410 
discarded. Next unique peptides were identified as those defined as non-conflicting by Progenesis 1411 
or identified as unique by NextProt tool (Expasy) or the Peptide Search tool from Uniprot. 1412 
Abundances from species of the same unique peptide identified with different retention times were 1413 
added together. Abundances from modified peptides were added separately. Finally, peptide 1414 
abundances were normalized based on the average abundance of all peptides from the 14 main 1415 
postsynaptic density (PSD) scaffolds (Dlg1, Dlg2, Dlg3, Dlg4, Dlgap1, Dlgap2, Dlgap3, Dlgap4, 1416 
Shank1, Shank2, Shank3, Homer1, Homer2 and Homer3), thus correcting for synaptic 1417 
enrichment differences between purifications. Peptide abundances were then analysed with 1418 
MSqROB to obtain protein abundance data and to identify proteins differentially expressed 1419 
between groups32,33. MSqROB was used with the following settings: abundance data was log2 1420 
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transformed, no normalization was applied, each peptide had to be identified in at least two 1421 
experiments and only proteins identified with at least 2 peptides were considered for 1422 
quantification. Furthermore, genotype was used as the fixed effect, while run, sequence and 1423 
peptide modification were defined as random effects. 1424 
 1425 
Allen Brain Atlas RNA ISH data analysis 1426 
Four different scientists manually inspected RNA in situ hybridization (ISH) data from adult mouse 1427 
brain from the Allen Brain Atlas79. Each researcher reviewed the 283 proteins overexpressed in 1428 
CA3-CA1, DG-CA3 and EC-DG synapses. RNA ISH data from the entorhinal cortex was also 1429 
reviewed for proteins with highest expression in dDG. For a protein to be classified as with highest 1430 
expression in one or more regions there had to be agreement on 3 out of the 4 researchers. 1431 
Proteins were classified into those with concordant protein and ISH expression and non-1432 
concordant ones. Proteomic data was considered concordant with ISH data when the RNA 1433 
expression level of a synaptic protein found with highest expression in one of the three 1434 
hippocampal regions investigated had highest ISH levels in the somas of one or both brain regions 1435 
contributing to that synapse. For instance, a protein found with highest expression in CA3-CA1 1436 
synapses had concordant ISH data if CA3 and/or CA1 somas presented highest expression level 1437 
of that gene for 3 out of the 4 researchers.  1438 
 1439 
Pathway enrichment analysis 1440 
Pathway enrichment analysis was performed using the pathfindR R package41. pathfindR takes 1441 
into consideration protein-protein interaction (PPI) data for pathway enrichment analysis, which 1442 
is performed using one-sided hypergeometric tests. For our analysis PPI data was retrieved from 1443 
BioGRID build 4.3.196 (https://thebiogrid.org/) and STRING version 11 (https://string-db.org/), 1444 
both restricted to Mus musculus species. Only STRING interactions with a confidence score 1445 
above 0.9 were taken into consideration. Redundant interactions between both databases were 1446 
removed, resulting in a final interaction database with 339.776 interactions. Gene name 1447 
conversions needed for merging data from different databases and converting them to updated 1448 
gene symbols were done with biomaRt R package80. Pathways investigated with pathfindR were 1449 
taken from MSigDB collections, (https://www.gsea-msigdb.org) and were restricted to Mus 1450 
musculus. MSigDB contains several collections of gene sets, we used the C2 set: curated gene 1451 
sets and the C5 set: ontology gene sets. On C2 collection, only REACTOME, WikiPathways and 1452 
KEGG pathways were used for analysis, which resulted in 2405 gene sets. For the C5 collection 1453 
all the GO gene sets were selected: Biological process (BP), Cellular Component (CC) and 1454 
Molecular Function (MF), resulting in 10185 gene sets. 1455 
 1456 
Briefly, pathfindR first builds a Protein Interacting Network (PIN) from all differentially expressed 1457 
(DE) molecules (genes/proteins) investigated using the PPI data provided. Next, subnetworks are 1458 
built from the PIN with a minimum length of 10 DE molecules using the Greedy algorithm with a 1459 
maximum depth of 1, hence only considering the addition of direct neighbours from DE molecules. 1460 
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Subnetworks with 50% of gene overlap are discarded, maintaining those with a higher score, 1461 
based on the adjusted p-value of DE molecules. Finally, pathway enrichment analyses is done 1462 
for each subnetwork, using all the molecules of the PIN as the background set. Pathways that 1463 
include less than 3 DE molecules are discarded. As the greedy algorithm is a stochastic method, 1464 
the whole process is repeated 50 times, starting from the subnetwork construction. For a pathway 1465 
to be considered it had to appear at least in 13 of the 50 (>25%) iterations. Finally, in order to 1466 
reduce complexity, enriched pathways are grouped using hierarchical clustering, based on their 1467 
similarity on the DE molecules they include. One ‘Representative’ term for each cluster was 1468 
chosen based on the lowest p-value from the hypergeometric test. Heatmaps to represent 1469 
gene/protein abundance data were generated with the scrattch.hicat R package from the Allen 1470 
brain atlas (https://github.com/AllenInstitute/scrattch.hicat). Protein and RNA abundance data 1471 
was normalized by a Log2(x+1) transformation and converted to z-scores. 1472 
 1473 
Source data files relevant to these analysis: Source_Data_6, 7 and 8.  1474 
 1475 
Analysis of single cell RNA-sequencing data from the Allen Brain Cell Atlas  1476 
Single cell RNA-seq. data from mouse glutamatergic neurons of the hippocampal formation was 1477 
retrieved from the Allen Brain Cell Atlas Database (Whole Cortex & Hippocampus - 10X Genomics 1478 
(2020) with 10X-SMART-SEQ taxonomy34). More precisely, we collected RNA-seq. data from the 1479 
following sub-classes of glutamatergic neurons: DG, CA2-IG-FC, CA3, CA1-ProS, SUB-ProS, CT 1480 
SUB and NP SUB, all belonging to the hippocampal formation which also includes subiculum 1481 
neurons34. Of note, in this manuscript we refer to ABA Sub-classes as Classes, for simplicity.  1482 
 1483 
Statistical analysis of RNA abundance data was performed using the Seurat R package81, which 1484 
is designed to work with single cell gene expression data. To identify DE genes we performed the 1485 
Wilcoxon Rank Sum test, which is the default test in the Seurat package. p-values were corrected 1486 
for multiple testing using the Benjamini-Hochberg procedure. As we are interested in identifying 1487 
abundance differences among genes expressed at synapses, we only worked with RNA 1488 
abundance data from the genes corresponding to our reference list of synaptic proteins (Suppl. 1489 
Table 1).  1490 
 1491 
To identify DE genes in a given group (i.e. class or type) we compared gene expression in that 1492 
group against that of all other groups together. The identification of DE among neuronal types 1493 
was done within classes. Statistics were done with an equal number of neurons for each group. 1494 
To identify DE genes between classes we used 100 neurons per class, and to identify DE genes 1495 
between neuronal types we used 25 neurons per type. In order to sample a representative number 1496 
of neurons per group so that all DE genes per group would be identified we had to iterate this 1497 
process. We empirically found that 150 iterations was enough to saturate the number of DE genes 1498 
in each group. Importantly, for a gene be considered as DE in a given group it had to be identified 1499 
as significantly DE in at least 90% of these 150 iterations. Furthermore, DE genes not only had 1500 
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to present and adjusted p-value below 0.05, but their expression fold change value (in log2 scale) 1501 
had to be above 0.6 for overexpressed genes or below -0.6 for downregulated genes.  1502 
 1503 
Gene expression Dendograms were generated with the median value of log2(x+1) transformed 1504 
gene expression abundance data and using the scrattch.hicat R package from the Allen brain 1505 
atlas (https://github.com/AllenInstitute/scrattch.hicat). 1506 
 1507 
Source data files relevant to these analysis: Source_Data_1 to 5. 1508 
 1509 
Uniform Manifold Approximation and Projection (U-MAPS) 1510 
To generate neuronal classes and types gene expression U-MAPS we used the umap-learn 1511 
package (https://pypi.org)82. The hyperparameters used to generate the maps were: Random 1512 
state: 24, Number of neighbours: 15 and Minimum Distance 0.1. All other parameters were left 1513 
as by default. Only the first two dimensions were used to generate the u-maps. 1514 
 1515 
Gene classification using machine learning  1516 
We used the random forest classification method to identify genes with the highest weight in the 1517 
organization of neurons in classes and types. Gene expression data from the Allen Brain atlas 1518 
was analysed with the ‘Random Forest Classifier’ function within the scikit-learn (https://scikit-1519 
learn.org/0.16/about.html) Python package64. The hyperparameters used for the Random Forest 1520 
Classifier were: Random state: 24, Max. Depth: 12 and Number of estimators: 200. Values for all 1521 
other parameters were kept as by default. The test set used included 20% of neurons in each 1522 
group and the train set the remaining 80%. The ‘confusion matrix’ function from scikit-learn was 1523 
used to generate confusion matrices. 1524 
 1525 
Source data file relevant to these analysis: Source_Data_9.  1526 
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Source Data: 1527 
 1528 
Source_Data_1_Iteration_Classes.R: R script to iterate the statistical analysis performed with 1529 
Seurat to identify genes differentially expressed between neuronal classes. 1530 
 1531 
Source_Data_2_Iteration_Types.R: R script to iterate the statistical analysis performed with 1532 
Seurat to identify genes differentially expressed between neuronal types. 1533 
 1534 
Source_Data_3_Analysis_Classes.R: R script to generate data tables and graphs for genes 1535 
differentially expressed between neuronal classes. This script also includes a quality control test 1536 
to validate differentially expressed genes.  1537 
 1538 
Source_Data_4_Analysis_Types.R: R script to generate data tables and graphs for genes 1539 
differentially expressed between neuronal Types. This script also includes a quality control test 1540 
to validate differentially expressed genes. 1541 
 1542 
Source_Data_5_Split_Types.R: R script to obtained data from a subset of neuronal types from 1543 
the entire transcriptomic database provided by the ABCA. 1544 
 1545 
Source_Data_6_pathfindR_Proteomics.Rmd: R script to perform the pathfinder analysis and to 1546 
generate the heatmaps from the proteomics data. 1547 
 1548 
Source_Data_7_pathfindR_Classes.R: R script to perform the pathfinder analysis and to 1549 
generate the heatmaps from transcriptomics data of neuronal classes (ABCA). 1550 
 1551 
Source_Data_8_pathfindR_Types.R: R script to perform the pathfinder analysis and to generate 1552 
the heatmaps from transcriptomics data of neuronal types (ABCA). 1553 
 1554 
Source_Data_9_ Random_Forest.ipynb: Python code to perform the Random Forest analysis on 1555 

transcriptomic data from the ABCA.  1556 
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